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Preface

Fluidization is one of the most widely used technologies in chemical engineering.
However, accurate predictions of dense gas-solid two-phase flows encountered in
fluidization processes remain a major challenge, and a significant barrier against
developing more efficient and clean fluidized bed reactors. A major factor that con-
tributes to the complexity of fluidization is the extreme range of scales that arise in
a typical gas-solid two-phase flow process. Experiments have provided substan-
tial insights, but measurements in this hostile environment are difficult, expen-
sive, and limited. Theory has also made important contributions, but analysis re-
mains confined to simplified models. Fortunately, computational simulation offers
the potential to bridge the gaps between theory and experiments. But the multi-
scale nature of dense gas-solid two-phase flows has imposed severe constraints on
what can practically be computed. Thus the multi-level modeling approach, where
the gas-particle and particle-particle interactions are simulated at different scales,
seems to be promising. In the past four years I has been working in this interesting
and exciting research direction, which leads to this thesis lying here.
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stage of the project. Especially, I would like to thank my daily supervisor dr. ir. Mar-
tin van der Hoef, whom I rather simply call Martin, and who was never far away if
the bears or the mosquitoes became too overwhelming. I greatly admire his deep
understanding of physics, sharp analytical skills, and hard-working spirit of a sci-
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pers that we submitted or published as well as the chapters of this thesis is greatly
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1
Introduction

ABSTRACT

In this chapter a brief introduction to gas fluidization, with emphasis on Geldart
A particles, is presented. Unlike other groups of particles, Geldart A particles can
display an interval of homogeneous fluidization, where no obvious bubbles are ob-
served. The mechanism underlying this homogeneous fluidization is still a matter
of debate, since two schools of viewpoints exist. One school attributes the origin of
homogeneous fluidization to hydrodynamical factors whereas the other school pos-
tulates cohesive particle-particle interaction as the relevant phenomenon. The poor
understanding of the mechanism underlying homogenous fluidization leads to con-
siderable difficulties in modeling fluidized beds of Geldart A particles. A multi-level
modeling approach is thus introduced to study the fluidization behavior of Geldart A
particles. With information of gas-particle interaction obtained from lattice Boltz-
mann simulations and particle-particle interaction from discrete particle simula-
tions, a continuum description of the dense solid-gas two-phase flows based on the
classical two-fluid model and kinetic theory of granular flows is expected to become
available. The cohesive forces between particles are also discussed and the van der
Waals force is considered as the primary cohesive interaction between Geldart A par-
ticles, which will be considered in this thesis. Finally the outline of this thesis is pre-
sented.



2 ‖ Introduction

1.1 Fluidization

Fluidization refers to the suspension or transport of granular materials by a contin-
uous fluid (gas or liquid), and is encountered frequently in industry in gas-fluidized
beds. A fluidized bed is typically a container of solid particles through the bot-
tom of which an upward fluid flow passes. If operated with well-matched fluid and
particle parameters, fluidized beds can provide many advantages such as uniform
temperature distribution, high mass transfer rates between fluid and solids phases,
continuous operation, and relative simplicity in geometric configuration [1]. In
history, the use of fluidization technology dates back to as early as the 16th cen-
tury. The major development of modern fluidized beds came with the Bergus-Pier
process for coal liquefaction and the Winkler process for coal gasification in the
mid 1920s [2]. Since then, fluidized beds have been widely applied in the petro-
leum, metallurgical, chemical, energy, environmental, and food industries.

However, the design and scale up of fluidized bed reactors still remains a con-
siderable challenge for engineers. This is mostly due to the poor understanding of
the hydrodynamics of the complex particulate two-phase flows in fluidized beds.
To develop a new fluidized bed under optimal conditions, a small or a pilot-scale
reactor, instead of the real one, is always used in the preliminary tests. Even with
well defined measurement techniques and pilot-scale models, the optimal oper-
ation parameters obtained in these tests may still differ significantly from those
required for the real large-scale reactors. The development of computational fluid
dynamics (CFD) techniques in recent years provides an efficient and promising
tool to support the design and scale up of fluidized bed reactors [3]. However, the
establishment of a general mathematical model, if not impossible, is quite difficult,
since for different operation conditions a number of distinctly different fluidization
regimes can be encountered.

1.1.1 Fluidization regimes

When a gas is fed through a bed of particles, it will exert a drag force upon the
particles which results in a pressure drop across the bed. With increasing super-
ficial gas velocity U0, the gravity force acting on the particles can be partially or
completely compensated by the drag force, which transforms the system gradually
from the solid-like state to a fluid-like state. In Figure 1.1 the typical (fluidization)
regimes observed in fluidized beds are shown. At a low flow rate, gas merely per-
colates through the bed, and the particles stay in a packed state due to the action
of gravity. This is a fixed bed. With increasing flow rate, the drag force becomes
sufficient to support the weight of the particles in the bed, the bed is said to be
fluidized. The minimum fluid velocity at which the weight of the solids is just bal-
anced by the drag force is called the minimum fluidization velocity Umf . At an even
higher flow rate, different fluidization behaviors will be found for liquid- and gas-
fluidization systems. In a liquid-fluidized bed, a smooth, progressive expansion of
the bed can be observed, in which no big bubbles or other void structures appear.
A bed such as this is called a particulate fluidized bed or a homogeneous fluidized
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2.4 Geldart’s Classic Classification of Powders 
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(1973, 1978) is shown in Figure 2.2 in which the characteristics of the four 
different powder types were categorized as follows: 
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Figure 1.1: The fluidization regimes encountered in industrial fluidized beds (from C. Dech-
siri, Ph.D thesis, University of Groningen, 2004 [4]).

bed. On the contrary a gas-fluidized bed has the appearance of boiling liquid. The
homogeneous expansion is only found for small and light particles in a very nar-
row interval of superficial velocities. In most gas-fluidized beds the bubbles will
grow and burst. If the dimension of the bed is small the bubbles will develop into
slugs. At very high flow rate the gas-fluidized bed might display turbulence-like
structures, which is called turbulent fluidization. Turbulent fluidization is often
found in the riser or downer in a circulating fluidized bed. For extremely high flow
rates the terminal velocity of the solids will be exceeded. In this case the particles in
both liquid- and gas-fluidized beds can be carried out with the fluid stream and the
upper surface of the bed does not exist anymore. This is the so-called pneumatic
conveying regime of solids.

Practically all important industrial applications of fluidization involve gas-
fluidized bed systems. Because of this, we shall deal primarily with gas-fluidized
bed systems in this work.

1.1.2 Types of gas fluidization

As discussed above, the flow patterns in gas fluidization are far more complicated
than that in liquid fluidization. However, not all types of particles can be fluidized
in a gas-fluidized bed. Even if fluidized, not all particles will experience all fluidiza-
tion regimes shown in Figure 1.1. The fluidization behavior of a gas-fluidized bed
depends strongly on the particle and gas properties. Based on experimental obser-
vations, Geldart [5] proposed a classification diagram for gas fluidization, In this fa-
mous diagram (as shown in Figure 1.2), particles were categorized into four groups
according to their typical characteristics exhibited in gas fluidization. Geldart A
particles are defined as aeratable particles, which normally have a small particle
size (dp < 130 µm) and low particle density (< 1400 kg/m3). This kind of parti-
cles can be easily fluidized at ambient conditions. The most important feature of
Geldart A particles is the interval of homogeneous fluidization when the gas veloc-
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Figure 1.2: The classification of gas fluidization. Here ρ∗ is the difference of the density
between particles and gas phase (based on D. Geldart, Powder Technol., 1973 [5]).

ity exceeds the minimum fluidization velocity Umf . In the homogeneous fluidiza-
tion regime the particles are mobile and macroscopic circulations patterns can be
observed. This differs significantly from the fixed bed regime as in the later case
particles are essentially static. A bed of Geldart A particles will not bubble until
the so-called minimum bubbling velocity Umb is reached. Fluid cracking catalysts
(FCC) particles typically are in this category.

Geldart B particles are called sandlike particles or bubbly particles. Most par-
ticles of this group have a size of 150 to 500 µm and a density from 1400 to 4000
kg/m3. For these particles, once the minimum fluidization velocity is exceeded,
the excess gas appears in the form of bubbles. The size of bubbles in a bed of Gel-
dart B particles can be as large as the dimension of the bed. Glass beads and sand
are belonging to this group.

Geldart C particles are cohesive particles with a mean size usually less than 30
µm. These particles are extremely difficult to fluidize because the interparticle at-
tractive van der Waals forces are relatively large. In small diameter fluidized beds,
this kind of particle easily gives rise to channeling. Examples of Geldart C materials
are talc, flour and starch.

Geldart D particles are called spoutable, and the materials are either very large
or very dense. They are also very difficult to fluidize in deep beds. As the gas veloc-
ity increases, a jet can be formed in the bed and the particles may then be blown
out with the jet in a spouting motion. If the gas distribution is uneven, spouting be-
havior and severe channeling can be expected. Lead shot and some roasted metal
ores are examples of Geldart D materials.

Although the Geldart’s classification is based on purely experimental observa-
tions, it proves to be an easy and useful tool for estimating the type of fluidization
at ambient conditions and for U0 less than about 10Umf . For any solid of a known
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density ρp and mean particle size dp this diagram provides a good prediction of the
actually observed fluidization regimes.

However, the physics behind this diagram is still unclear. In most of the indus-
trial applications Geldart A and B particles are employed. Unlike Geldart B parti-
cles, Geldart A particles can display an interval of homogeneous fluidization that is
only found in liquid-fluidization systems. This interval of homogeneous fluidiza-
tion is particularly important for the Fluid Catalytic Cracking (FCC) fluidized bed
reactor, which is currently a standard component in the production of gasoline and
other fuels from heavy oil components in an oil refinery. Compared to Geldart B
particles, however, less is known concerning the mechanism of the fluidization of
Geldart A particles. The CFD techniques developed so far are still unsuccessful to
predict the two-phase flows in large-scale fluidized beds of Geldart A particles.

1.1.3 The mechanism of fluidization of Geldart A particles

Despite many detailed phenomenological investigations [5–8], the mechanism be-
hind the fluidization of Geldart A particles, however, has not yet been fully under-
stood.

In the 1940s, Wilhelm and Kwauk [9] tried to explain the difference between ho-
mogeneous fluidization and heterogeneous fluidization. Based on a careful inves-
tigation of both liquid- and gas-fluidized beds, they proposed the dimensionless
Froude number Fr to define the transition point. They found that the homoge-
neous expansion will mostly occur if Fr � 1.0 [9]. This criterion, however, has
been found to be inaccurate in later studies.

From the theoretical viewpoint, homogeneous fluidization is closely related to
the stability of continuum field conservation equations that govern the solid-gas
two-phase flow inside a fluidized bed [10]. Jackson and his co-workers [11,12] were
among the pioneers who tried to analyze this stability. They found that in addition
to the inertia and drag force, a new term similar to the gas pressure is required to
describe the motion of the particulate phase, otherwise the bed would always be
unstable [12]. This new term, which was found to be a function of the porosity [13],
has been considered as the particulate pressure. Unlike the pressure of a liquid or
a gas, the particulate pressure is somewhat artificial since it has no clear physical
meaning. However, the physical origin of the particulate pressure actually reflects
the mechanism of the homogeneous fluidization in gas-fluidized beds.

Foscolo and Gibilaro [14], in the spirit of Verloop and Heertjes [15], suggested
that a shock wave due to the change of porosity (i.e. when porosity wave rises faster
than the velocity of the so-called equilibrium disturbance) is the dominant factor
that causes the instability of the homogeneous fluidization regime. They related
the origin of the particulate pressure to the propagation of some kind of elastic-
ity wave and defined an elasticity modulus to account for the stability of the bed.
Although Foscolo and Gibilaro were able to predict the minimum bubbling points
in many cases, not all phenomenon associated with homogeneous fluidization in
a gas-fluidized bed [16] could be explained. On the other hand, Rietema and his
co-workers [8, 17] proposed that the interparticle forces should be responsible for
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the homogeneous fluidization behavior of small particles, rejecting Foscolo and
Gibilaro’s purely hydrodynamic analysis. Rietema and his co-workers argued that
the concept of an effective elastic modulus could be related to some kind of me-
chanical structure induced by the interparticle van der Waals forces. Although
the viewpoint of Rietema and his co-workers [8, 17] has a clear physical basis, it
proves difficult to find a quantitative relation between the interparticle van der
Waals forces and the macroscopic physical quantities of the bed. The reasons are
twofold: Firstly, up to date there is no technique that can measure the detailed mi-
croscopic structure inside a gas-fluidized bed; Secondly, the interparticle van der
Waals forces are short-range forces and strongly depend on the shape and surface
properties of particles.

The mechanism underlying the homogeneous fluidization has since then been
a matter of debate between researchers. Experimental results by Tsinontides and
Jackson [18] and Menon and Durian [19] suggest that the state of homogeneous
fluidization is actually solid-like where the enduring contacts make particles stay
at rest, which supports the assumption that interparticle forces play a crucial role
in homogeneous fluidization regime. By contrast, in another set of experiments
Cody et al. [20, 21] showed a pronounced increase in the particle velocity fluctua-
tions during the transition from Geldart B to Geldart A fluidization behavior, which
means that the bed of particles displays a fluid-like behavior. In a recent exper-
iment, Valverde et al. [22] fluidized very fine particles (dp ∼ 8.53µm) by adding
some nano-seed flow conditioners, which can greatly reduce the cohesive force be-
tween particles. They observed a relatively long interval of homogeneous fluidiza-
tion, and found that even during homogeneous fluidization both the solid-like and
fluid-like behavior can be distinguished. This finding bridges the gap between the
experimental results by Tsinontides and Jackson [18] and Menon and Durian [19]
and Cody et al. [20, 21]. However, since Valverde et al. [22] used Geldart C particles,
it is unclear yet as to whether the solid-like or the fluid-like behavior is dominant
for true Geldart A particles in gas-fluidized beds as well.

A theoretical approach was initiated by Koch and Sangani [23], who derived a
very detailed kinetic theory taking into account the fluid-particle interaction and
particle-particle collisions. From a stability analysis based on their theory, Koch
and Sangani [23] showed that the homogeneous fluidization is not stable, un-
less other non-hydrodynamical factors such as interparticle forces are considered.
Buyevich and his co-workers [24, 25] also developed a similar kinetic theory based
on the random fluctuation of particles induced by hydrodynamics. Based on this
theory, very recently Sergeev et al. [26] found that the apparent stability of uniform
fluidization can also be explained without taking into account interparticle forces.
Clearly, so far no consensus has been reached on the precise mechanism underly-
ing homogeneous fluidization.
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1.2 Cohesive forces between particles

In many industries which deal with particulate materials, cohesion plays a crucial
role. Cohesion between particles can arise from a variety of sources including van
der Waals forces, electrostatic forces, liquid bridging (i.e. capillary forces), sinter-
ing, and so on. These interparticle forces become increasingly important as parti-
cle size decreases. Although all these forces may be encountered in fluidized beds,
the van der Waals forces are generally accepted as the key force with respect to the
influence on the fluidization behaviors of fine particles (Geldart A and C particles).
Normally the cohesive forces can lead to a substantial change of the behavior of
particulate flows, as particles tend to aggregate so that the flow behavior is mostly
determined by the clusters of solids, instead of the individual particles.

1.2.1 Van der Waals forces

The van der Waals force is present between any two molecules (polar or non-polar)
and therefore the force is usually connected with the intermolecular interactions.
At the molecular level, the van der Waals force follows from the fluctuating dipole-
dipole interactions. According to London’s theory, the intermolecular potential can
be expressed as

φ ∼ S−6, (1.1)

where S is the distance between two molecules. We assume:
(1) No repulsive interaction exists;
(2) Interparticle potential can be just related to the sum of intermolecular potentials
between two particles;
(3) The shapes of particles under consideration are spherical.

The interparticle van der Waals potential can thus be obtained by integrating
the London potential between macroscopic spherical particles [27, 28]. The result-
ing force is given by

Fvdw,ab(S) =
A

3
· 2RaRb(S + Ra + Rb)

[S(S + 2Ra + 2Rb)]
2

[
S(S + 2Ra + 2Rb)

(S + Ra + Rb)
2 − (Ra −Rb)2

− 1

]2

, (1.2)

where R is the sphere radius, A is the Hamaker constant and S is the intersurface
distance, which takes a minimum value of the order of the inter-molecular spacing.
Eq.(1.2) can be approximately reduced to

Fvdw,ab(S) =
AR

12S2
, (1.3)

if Ra = Rb = R.

1.2.2 Liquid bridge

Due to capillary condensation, at relative humidities below 100% water may form
liquid bridges at contact points between solid bodies. The shape of the liquid
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Figure 1.3: The cohesive forces between two spheres. Dashed lines: the asperity-to-plane
contact. Liquid bridge force calculated from a quartz/water system (from J. Seville, Powder
Technol., 2001 [29]).

bridge is determined by the Laplace-Young equation (mechanical equilibrium),
which is related to the humidity via the Kelvin equation (physico-chemical equi-
librium). The extent of liquid bridge formation depends on the amount of free liq-
uid, the surface tension and the liquid viscosity. Normally the liquid bridge force
includes both dynamic and static parts and is of dissipative nature [29]. The static
force depends mainly on the shape of the gas-liquid interface while the dynamical
part depends mainly on the fluid motion near the point of closest contact. Usu-
ally, the maximum static liquid bridge force occurs at close contact and is approxi-
mately given by

Fls,max = 2π Rγ, (1.4)

with γ the surface tension of water. The exact calculation of the dynamical part is
difficult. A first approximation is normally given by Reynolds’ lubrication equation,

Fld = 6πµl R
2vr/r, (1.5)

where µl is liquid viscosity, vr is the relative velocity between two particles, and r is
the interparticle distance.
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1.2.3 Relative importance of cohesion

The relative importance of cohesive forces in a gravitational system can be reflected
by the Bond number Bo, which is defined as the ratio of particle weight to cohesive
force. In fact for real particles both the van der Waals force and liquid bridge force
strongly depend on the surface properties. In many cases one would assume a
particle surface roughness and use this to determine the curvature. The radius R is
then taken as the local curvature instead of the gross radius of the spheres.

The typical results of the van der Waals force and liquid bridge force for different
parameters are shown in Figure 1.3 [29]. The dashed lines stand for the results
with a local curvature instead of the gross radius of the particles. It is shown that
for spherical particles of diameter around 100 µm the Bond number should equal
unity. If the gross particle radius is directly used, the particle diameter will be 1 mm
when the Bond number Bo reaches 1.0. However, in a real system, particles of 100
µm are commonly found adhering to surfaces while 1 mm particles are not.

In fact the exact determination of local curvature is considerably more involved.
In this study we only consider the van der Waals force between smooth spheres.
To adjust the magnitude of the cohesive forces, we prefer to change the Hamaker
constant, rather than search for a suitable local curvature when using Eq.(1.2).

1.3 Multi-level modeling for dense solid-gas two-phase
flows

Computational fluid mechanics (CFD) constitutes a powerful and emerging tool to
understand hydrodynamics of gas-particle flows in fluidized beds. However, being
a complex system, gas-fluidized beds can display quite different flow patterns on
both spatial and temporal scales. On one hand, for the same fluidized bed, if op-
erated at a different conditions, several fluidization regimes might be experienced.
On the other hand, even operated at the same conditions, flow structures at differ-
ent length scales will be present: the largest flow structures such as bubbles can be
of the order of meters; while the fine structures such as grain clusters, which are
formed by the microscopic particle-particle interactions, take place on the scale of
millimeters or less. The large separation of scales presents the prime challenge
for modeling gas-fluidized beds [31]. Development of CFD in recent years, on
the other hand, makes it possible to simulate the flow behavior at microscopic,
mesoscopic and macroscopic scales of solid-gas two-phase systems respectively.
Due to the limitation of computer resources, the microscopic- and mesoscopic-
scale models are difficult, if not impossible, to be extended to engineering applica-
tion (macroscopic-scale simulation) in the foreseeable future. However, they can
help us to gain a better insight into the gas-particle, particle-particle, and particle-
wall interaction in dense particle-gas flows. The results from microscopic and
mesoscopic-scale simulations therefore can be used to improve the currently avail-
able macroscopic models. Along this line, a multi-level CFD modeling approach is
utilized in this study.
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Continuum models

Discrete particle model

Lattice Boltzmann model

Large scale simulations

Particle-particle interaction
           closure laws

   Fluid-particle interaction
             closure laws

Figure 1.4: The multi-level modeling concept for dense gas-solid two-phase flows (based on
B.P.B. Hoomans, Ph.D thesis, University of Twente, 2004 [30]).

The schematic representation of the multi-level approach is shown in Figure
1.4. The microscopic, mesoscopic and macroscopic level models consist of the
lattice Boltzmann model (LBM), discrete particle model (DPM) and kinetic theory
of granular flow (KTGF) based two-fluid model (TFM) respectively.

At the most fundamental level, the gas flow field is modeled at scales smaller
than the size of the particles. The interaction of the gas phase with the particles is
considered by imposing suitable boundary conditions at the surface of the solids.
The flow field between the spheres can be solved by the lattice Boltzmann method
(LBM) [32, 33]. The detailed gas-particle interaction (in the form of drag force) ob-
tained from this microscopic level LBM simulation will be applied to higher level
models instead of the conventional empirical correlations, which are only valid for
spatially homogeneous flows.

At the mesoscopic level, the flow field is modeled at a scale much larger than
the size of the particles, and the fluid velocity and pressure are obtained by solving
the volume-averaged Navier-Stokes equations. The particle-particle interactions
(particle-wall as well) are formulated with the so-called discrete particle models
(DPM), which are based on the schemes that are traditionally used in molecular
dynamics simulations, modified such as to take dissipation of energy and friction
into account, which are absent in a molecular system [34–36].

At the macroscopic scale, a two-fluid model (TFM) is used where the con-
tinuum description is employed for both the particle phase and the fluid phase
[37, 38]. The information obtained in the two lower-level models is then included
in the continuum models via the kinetic theory of granular flow (KTGF). The ad-
vantage of this model is that it can predict the flow behavior of gas-solid flows at
life-size scales, and these models are therefore widely used in commercial fluid flow
simulators of industrial scale equipment.
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1.4 Outline of the thesis

This book considers the multi-leveling approach for Geldart A particles in gas-
fluidized beds, by staring with a general introduction of the background in this
Chapter.

In chapter 2 the numerical modeling approaches for dense gas-solid two-phase
flows are described, with the emphasis on the mesoscopic-scale soft-sphere dis-
crete particle model and macroscopic-scale two-fluid model.

Chapter 3 reports on a 2D numerical study of fluidization behavior of Geldart
A particles by use of the soft-sphere discrete particle model, where some typical
features encountered in fluidization of Geldart A particles are displayed, and the
mechanism underlying the homogeneous fluidization, based on an analysis of the
velocity fluctuation of particles, is discussed.

In chapter 4 we present a 3D discrete particle simulation by alternating differ-
ent gas and particle properties, which aims at the comparison of the simulation
results and the classical empirical correlations by Abrahamsen and Geldart [7].

Chapter 5 describes a test of the kinetic theory of granular flows (KTGF) with
Geldart A particles. In this chapter, we first compare the results of discrete particle
model for cohesiveless particles, and then study the effect of the cohesive forces on
KTGF closures.

The two-fluid modeling of Geldart A particles is discussed in chapter 6. Based
on the information obtained in chapter 5, the impact of cohesion between particles
bed expansion dynamics is studied. Also the particle-fluid interaction, in the form
of drag force, is considered.
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2
Numerical Modeling for Dense Gas-solid

Two-phase Flows

ABSTRACT

In this chapter the numerical modeling approaches for dense gas-solid two-phase
flows are described. For the gas phase, continuum models are used, although at very
small scales, also discrete models are used (see section 2.21). For the solid phase,
both continuum models and discrete models can be applied, where the most suit-
able choice strongly depends on the length scale of interest. The combination of these
models, together with a suitable coupling technique, can be used to model gas-solid
two-phase flows. Based on this concept, a multi-level modeling approach is intro-
duced. In this research, we focus on the meso- and marco-scale models of Geldart
A particles. On the meso-scale, a soft-sphere discrete particle model is used, from
which we can investigate the effects of the particle-particle interactions in detail.
The gas is treated as a continuum where the volume-averaged Navier-Stokes equa-
tions are used to compute the flow field. Apart from the collision forces, also the
cohesive forces are considered in the discrete particle model. On the macro-scale, the
two-fluid model based on the kinetic theory of granular flows is applied. The infor-
mation obtained from the meso-scale simulations will be further used to improve
the closures of the solid phase stress tensor, which is essential for developing a two-
fluid model for Geldart A particles with predictive capability. In this chapter, we first
give a general overview of the discrete particle model and the two-fluid model, after
which the details of these models are presented.
Based on: M. Ye, C. Zeilstra, M. A. van der Hoef and J. A. M. Kuipers, 2005. Discrete particle model for

gas-solid two-phase flows. In preparing for publication.
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2.1 Introduction

Granular materials are frequently encountered in various natural processes and
their man-made counterparts [1]. They represent the most common form of raw
material in industry world-wide. In weight, it is estimated that at least 75% of the
raw material and 50% of the products in the chemical industry are handled as gran-
ular material [2]. Thus it is not surprising that the understanding of granular flows
is playing a crucial role in designing and scaling up of a wide variety of industrial
processes. Short of a general theory and efficient experimental techniques, the
challenge therefore is to find computational models that are on one hand accurate
enough to allow reliable predictions, but where on the other hand the computing
efficiency is sufficiently high to permit a simulation of large scale granular systems.

Although the granular dynamics has attracted considerable interests from re-
searchers [3], it is not possible to accurately simulate the large scale industrial gran-
ular flows at present. A flow of granular materials is typically a two-phase process
since the void spaces between particles are filled with air. The flow behavior of the
granular material is not only determined by the interactions between particles, but
is also affected by the interstitial air. Meanwhile, the flow of the interstitial air can
also be modified due to the presence of particles. In most industrial applications,
the granular materials are encountered in the form of dense gas-solid two-phase
flows. In this research we will concentrate on the flow behavior of these systems,
especially those encountered in gas-fluidized bed reactors of Geldart A particles.

2.2 Numerical models for gas-solid two-phase flows

2.2.1 Gas phase

The description of a gas flow has already been well established from the micro-
to macro- scales. The length scale of a gas flow can be characterized by the local
Knudsen number, which is defined as

Kn =
λ

L
, (2.1)

where λ is the mean free path of the molecules, and L is the characteristic length
scale of the flow. In Figure 2.1 the models for a gas flow are schematically shown.
For large scale systems with Kn < 0.01, the gas flow can be described by ordinary
fluid dynamics where the macroscopic fields (such as density and velocity) are for-
mulated by Navier-Stokes equations in a three-dimensional coordinate space, to-
gether with no-slip boundary conditions. A number of well-developed numerical
algorithms and meshing techniques in computational fluid dynamics (CFD) can
be used to handle very complex geometries [4]. If the system becomes smaller,
say 0.01 < Kn < 0.1, the Navier-Stokes equations still hold but caution must be
given to the boundary conditions since partial slip might exist between the gas-
solid interfaces. For a rarefied gas where Kn > 0.1, the continuum assumption
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Figure 2.1: The scheme of multi-level modeling for gas flows.

breaks down, and the so-called kinetic theory of (dense) molecular gases should
be applied. Kinetic theory differs from the ordinary fluid dynamics as there is just
one field (the density of molecules) in the phase space. The basic equation in ki-
netic theory, in the simplest form, is the Boltzmann equation which describes the
evolution of the density function f in a six dimensional space (three coordinates
and three velocity components) [5]. At this scale, computational techniques such
as Molecular Dynamics (MD) [6] and Direct Simulation Monte Carlo (DSMC) ap-
proach [7] can be very efficient. In these techniques the motion of molecules is
traced on an individual basis. Gas pressure and other transport coefficients in-
cluding gas viscosity and thermal conductivity are obtained from a statistical me-
chanics approach [5]. Molecules can be treated either as hard-spheres or points
with certain interaction potentials, depending on their physical properties. In the
extreme case where the mean free path is very large compared to the system sizes
(i.e, > 10), the molecules move freely, and just collide with the walls. This is the
limit of free molecular flow where the gas can be simply assumed as an ideal gas.

Clearly there are two quite different types of models for a gas flow: the con-
tinuum models and the molecular models. Although the molecular models can,
in principle, be used to any length scale, it has been widely applied at the micro-
scale because of the limitation of computing capacity at present. The continuum
models present the main stream of engineering applications and are more flexible
when applying to different macro-scale gas flows, however, they are not suited for
micro-scale flows. The gap between the continuum and molecular models can be
bridged by the kinetic theory which is based on the Boltzmann equation.

2.2.2 Solid phase

The methods used for modeling pure granular flows are essentially borrowed from
that of a molecular gas. Similarly there are two main types of models: the continu-
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ous (Eulerian) models [8] and discrete particle (Lagrangian) models [3, 9, 10]. The
continuum models are developed for large-scale simulations, where the control-
ling equations resemble the Navier-Stokes equations for a ordinary gas flow. The
discrete particle models are typically used in small scale simulations or in the in-
vestigation of the detailed physics of granular flows. A kinetic theory of granular
flows has also been proposed to connect the micro-scale picture of granular flows
to the macro-scale description [11, 12].

However, a granular flow differs significantly from a molecular gas flow. The
collisions between molecules are elastic, and the kinetic energy is conserved in
isothermal systems. For the molecular gas an equilibrium state can be easily es-
tablished in the absence of any external energy sources, and we can define a ther-
mal temperature based on the internal kinetic energy. The interaction between
macroscopic particles, however, is far more complicated. The collision between
two macroscopic particles will come with surface friction and elastic-plastic de-
formation, which leads to the dissipation of kinetic energy. This inelasticity forms
the primary feature of granular flow that differentiates it from molecular gas [13].
Clearly, without any external energy sources, a granular system will continuously
”cool down”, and an equilibrium state can never be reached.

In modeling a granular system, the discrete particle models play an important
role and assume that the particle motion can be well-described by the Newtonian
equations. However, in order to establish a continuum description, a number of
serious difficulties are encountered when one tries to describe the fields in phase
space. First, a source term and a dissipative term should be included in the Boltz-
mann equations, which complicates the (approximate) solution. Also, even for the
same type of materials, particle sizes may show a certain distribution. It is well-
known that a difference in particle sizes will result in the segregation of granular
materials (e.g. the Brazil nut effect). Furthermore, in most granular flows the ef-
fect of gravity cannot be ignored, which introduces an anisotropy in the velocity
fluctuation of particles. Clearly the definitions of particle phase pressure and other
transport coefficients are not straightforward because a homogeneous equilibrium
state normally does not exist. This keeps the establishment of a hydrodynamical
model for granular flows a great challenge for both scientists and engineers [14].

2.2.3 The interphase coupling

The interphase coupling deals with the effects of gas flow on the solids motion
and vice versa. Elgobashi [15] proposed a classification for gas-solid suspensions
based on the solid volume fraction εp, which is shown in Figure 2.2. When the solid
volume fraction is very low, say εp < 10−6, the presence of particles has negligi-
ble effect on the gas flow, but their motion is influenced by the gas flow for suffi-
ciently small inertia. This is called ”one-way coupling”. In this case, the gas flow
is treated as a pure fluid and the motion of particle phase is mainly controlled by
the hydrodynamical forces (e.g. drag force, buoyancy force, and so on), while the
particle-particle interaction is assumed to be irrelevant. With increasing solid vol-
ume fraction up to εp < 10−3, the effects of the particle phase on the gas phase
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Figure 2.2: Interphase coupling. (based on Elgobashi, Applied Sci. Res., 1991. [15])

flow pattern will become important. In this region, turbulent structures encoun-
tered in gas flows can be modified by the presence of particles. So the gas phase
and particle phase can interact with each other. It is commonly accepted that
the particle-particle interaction still does not play a dominant role in this regime,
which we normally refer to as ”two-way coupling”. For even higher solid volume
fraction εp > 10−3, the momentum of particles will be transported not only by the
free flight mechanism, but also by the collisions between particles and particles
and the confining walls. In this connection, the particle-particle interaction will be
very important and ”four-way coupling” should be taken into account.

2.2.4 The multi-level modeling approach for gas-solid two-phase flows

As shown above, for both the gas and particle phase, the continuum-(Eulerian)
and discrete- (Lagrangian) type of models can be applied, depending on the length
scales. In fact, to model gas-solid two-phase flows, one can make use of the com-
binations of these models provided that they are linked with a suitable coupling
method. In this thesis, a multi-level modeling approach is used to study the gas-
solid two-phase flow in gas-fluidized beds, with focus on systems with Geldart A
particles [16]. In Figure 2.3 we show the concept of the multi-level modeling ap-
proaches for gas-solid two-phase flows, which can be divided into three groups,
i.e, Lagrange-Lagrange, Euler-Lagrange, and Euler-Euler models.

At the most fundamental level, the idea of Lagrange-Lagrange models are em-
ployed. However, as a macro-scale gas volume is composed of a huge number of
molecules, the direct use of molecule-grain approach is, although in principle pos-
sible, not feasible with present day computers. One can introduce some approx-
imations by treating the gas phase as discrete ”particles” on a scale much larger
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Figure 2.3: The scheme of multi-level modeling for gas-solid two-phase flows.

than that of a single molecule, but still smaller than the size of macro-scale parti-
cles. These gas ”particles” obey the Boltzmann equations and transport the mo-
mentum in a lattice. A carefully chosen no-slip boundary conditions is required at
gas-solid interfaces. This is the so-called lattice Boltzmann method (LBM) [17, 18].
The results obtained in LBM simulations will be applied to obtain the detailed
gas-particle interaction (in the form of drag force), which can be used in higher
level models instead of the conventional empirical correlations. This idea has been
adopted in a project parallel to this one. The details of LBM will not be described
in this thesis .

The starting point of this study is the meso-scale Euler-Lagrange model. In
this model the particle-particle and particle-wall interactions will be taken into ac-
count by use of a soft-sphere discrete particle approach. The gas phase dynamics
is calculated by solving the volume-averaged Navier-Stokes equations in the do-
main of interest. In principle four-way coupling is required, however, the interac-
tions between particles are coupled in a natural way in the discrete particle model.
Consequently, the essential part is the two-way coupling between gas and parti-
cle phases, which are realized in the form of the drag force that presents the most
important gas-particle interaction in a gas-fluidized bed. This meso-scale Euler-
Lagrange model can help us to gain necessary information of particle-particle in-
teractions of Geldart A particles, which is required to develop and improve the ki-
netic theory of granular flows. A reliable kinetic theory of granular flows specialized
to Geldart A particles has not been established so far, and even the applicability of
the standard theory has not been verified. The latter is very essential for develop-
ing the closure laws for a macroscopic-scale Euler-Euler model. The Euler-Euler
model in this research is typically a two-fluid model (TFM) [19] based on the mod-
ified kinetic theory of granular flows. By use of well-developed computational fluid
dynamics (CFD) techniques, this model is expected to be directly applied to the
engineering scale equipments.
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2.3 Euler-Lagrange model

2.3.1 Discrete particle model

Discrete particle models offer a viable tool to study the macroscopic behavior of
assemblies of particles, and originated from molecular dynamics (MD) methods.
Initiated in the 1950s [20], MD has been extensively developed, with thousands of
papers published in the open literature. A thorough discussion of MD techniques
was given by Allen and Tildesley [6], where the details of both numerical algorithms
and computational tricks have been presented. Also Frenkel and Smit [21] pro-
vided a comprehensive introduction to the ”recipes” of classical molecular dynam-
ics and also explained the physics underlying these methods. Nearly all techniques
developed for MD can be directly applied to discrete particles models, except the
formulation of particle-particle interactions. Based on the mechanism of particle-
particle interaction a granular system may be described either as ”hard-spheres”
or as ”soft-spheres”.

Hard-sphere model

In a hard-sphere system the trajectories of particles are determined by
momentum-conserving binary collisions. The interactions between particles are
assumed to be pair-wise and instantaneous. In the simulation, the collisions are
processed one by one according to the order in which the events occur. For not
too dense systems, the hard-sphere models are considerably faster than the soft-
sphere models. Note that the occurrence of multiple collisions at the same instant
cannot be taken into account.

Campbell and Brennen [22] reported the first hard-sphere discrete particle sim-
ulation used to study granular systems. Subsequently, the hard-sphere models
have been applied to a wide variety of simulations, for studying the basic physics
of complex granular systems.

Hoomans et al. [23] used the hard-sphere model, in combination with a CFD
approach for the gas phase conservation equations, to study gas-solid two-phase
flows in gas-fluidized beds. By using this model, they studied the effect of particle-
particle interaction on bubble formation [23] and the segregation induced by par-
ticle size differences and density differences [24]. This model has been further
used in connection with the kinetic theory of granular dynamics by Goldschmidt et
al. [25], high pressure fluidization by Li and Kuipers [26], and circulating fluidized
beds by Hoomans et al. [43].

Similar simulations have been carried out by other groups. Ouyang and Li [27]
developed a slightly different version of this model. Helland et al. [28] recently de-
veloped a discrete particle model in which the hard-sphere collisions are assumed,
but where a time-driven scheme (typically found in the soft-sphere model) was
used to locate the collisional particle pair. Effect of the gas turbulence has also been
taken into account in some hard-sphere models by Helland et al. [29], Lun [30] and
Zhou et al. [31].
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At high densities or low coefficients of restitution e, the collisions will lead to a
dramatical decrease in kinetic energy. This is the so-called inelastic collapse [32], in
which regime the collision frequencies diverge as relative velocities vanish. Clearly
in that case, the hard-sphere method becomes useless.

Soft-sphere model

In more complex situations, the particles may interact via short or long range
forces, and the trajectories are determined by integrating Newtonian equations of
motion. The soft-sphere method originally developed by Cundall and Strack [33]
was the first granular dynamics simulation technique published in the open lit-
erature. In soft-sphere models the particles are allowed to overlap slightly, and
the contact forces are subsequently calculated from the deformation history of the
contact using a contact force scheme. The soft-sphere models allow for multiple
particle overlap although the net contact force is obtained from the addition of all
pair-wise interactions. The soft-sphere models are essentially time-driven where
the time step should however be carefully chosen in calculating the contact force.
Normally soft-particle models differ from each other with respect to the contact
force scheme that is used. A review of various popular schemes for repulsive inter-
particle forces is presented by Schäfer et al. [34]. Walton and Braun [35] developed
a model which uses two different spring constants to model the energy dissipation
in the normal and tangential direction respectively. In the force scheme proposed
by Langston et al. [36], a continuous potential of an exponential form containing
two unknown parameters, i.e. the stiffness of the interaction and an interaction
constant, has been used.

A 2D soft-sphere approach was first applied to gas-fluidized beds by Tsuji et
al. [37], where the linear-spring/dashpot model similar to the one presented by
Cundall and Strack [33] was employed. Xu and Yu [38] independently developed a
two-dimensional model of a gas-fluidized bed. However in their simulations a col-
lision detection algorithm that is normally found in hard-sphere simulations was
used to determine the first instant of contact precisely. Based on the model devel-
oped by Tsuji et al. [37], Iwadate and Horio [39] incorporated van der Waals forces
forces to simulate cohesive particle fluidization. Kafui et al. [40] developed a dis-
crete particle model based on the theoretical contact mechanics, thereby enabling
the collision of the particles to be directly specified in terms of material properties
such as friction, elasticity, elasto-plasticity and auto-adhesion.

It is also interesting to note that soft sphere models have also been applied to
other applications such as gas-particle heat transfer by Li and Mason [41] and coal
combustion by Zhou et al. [42]. Clearly these methods open a new way to study
difficult problems in fluidized bed reactors.

Comparison between hard- and soft-sphere models

Although both hard- and soft-sphere models have been used in the simulation of
granular flows, each of them has own charateristics which make them very effi-
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Table 2.1: Comparison between hard- and soft-sphere models.
hard-sphere soft-sphere

Computing efficiency ++ +
Multiple contacts - ++
Lower coefficient of restitution - ++
Incorporation of cohesive force + ++
Energy conservation during collisions ++ +
Multiple particle sizes ++ +

++: good
+ : normal
- : fail

cient in some cases while inefficient in other cases. In Table 2.1 these two types
of models have been compared. Hard-sphere models use an event driven scheme
because the interaction times are (assumed to be) small compared to the free flight
time of particles, where the progression in physical time depends on the number
of collisions that occur. On the other hand, in the soft-sphere models a time step
that is significantly smaller than the contact time should be used. Clearly the con-
tact time is much shorter than the free flight time, which indicates the comput-
ing efficiency is accordingly much lower than the hard-sphere models. In the soft-
sphere models a slight deformation of particles is allowed, so the multiple contacts
between several pairs of particles are possible, which never happen in the event-
driven models. As mentioned above, a lower coefficient of restitution may lead to
the inelastic collapse in hard-sphere simulations, which, however, has not been
found in soft-sphere simulations. Incorporation of cohesive forces, especially the
pair-wise forces, is quite straightforward in soft-sphere models. This is because the
collisional processes in soft-sphere models is described via the Newtonian equa-
tions of motion of individual particles, that is, in terms of forces. In the hard-sphere
system, the update is not via forces (they are either zero or infinite), and thus forces
and collisions are separately treated. Since the cohesive forces are essentially short-
range forces, the incorporation of cohesive forces is quite involved. If there exists
particles with different sizes, the soft-sphere model may suffer some difficulties. In
a soft-sphere system using a linear-spring/dashpot scheme, the spring stiffness is
dependent on the particle size. This means that in principle different spring stiff-
ness should be used for calculating the contact forces between particles with dif-
ferent sizes. Otherwise the computing efficiency will drop substantially.

In this research, we will focus on the fluidization of Geldart A particles. This
type of particles are normally operated in a very dense (homogeneous expansion)
regime, and multiple contacts are expected. Furthermore, the cohesive interaction
between this type of particles is also believed to be important. Therefore, the soft-
sphere model will be used in this work.
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2.3.2 The scheme of soft-sphere model

The equations of motion

The motion of a single spherical particle a with mass ma and moment of inertia Ia

can be described by Newtonian equations:

ma
d2ra

dt2
= Fcontact,a + Fcoh,a + Fext,a (2.2)

Ia
d2Θa

dt2
= Ta (2.3)

where ra is the position, Fcontact,a the sum of all interparticle contact forces, Fcoh,a

the sum of cohesive forces, Fext,a the sum of all other external forces, Ta the torque,
and Θa the angular displacement. The external forces Fext,a include, for example,
the drag force, the gravitational force, and the buoyancy force. The calculation of
the external forces and cohesive forces will be described in the following sections.
Fcontact,a is computed as the sum of all contact forces exerted by all particles being
in contact with the particle of interest, which are naturally divided into a normal
and a tangential component,

Fcontatc,a =
∑

b∈ contactlist

(Fab,n + Fab,t) (2.4)

The cohesive force is considered to be the interparticle van der Waals force. The
torque Ta equals

Ta =
∑

b∈ contactlist

(Ranab × Fab,t) (2.5)

Contact force

The calculation of the contact force between two particles is actually quite in-
volved. A detailed model for accurately computing contact forces involves com-
plicated contact mechanics [44], the implementation of which is extremely cum-
bersome. Many simplified models have therefore been proposed, which use an
approximate formulation of the interparticle contact force. The simplest one is
originally proposed by Cundall and Strack [33], where a linear-spring and dashpot
model is employed to calculate the contact forces. The scheme of this linear-spring
/dashpot soft-sphere model is shown in Figure 2.4. In this model, the normal com-
ponent of the contact force between two particles a and b can be calculated by

Fab,n = −knδnnab − ηnvab,n, (2.6)

where kn is the normal spring stiffness, nab the normal unit vector, ηn the normal
damping coefficient, and vab,n the normal relative velocity. The overlap δn is given
by

δn = (Ra + Rb)− |ra − rb|, (2.7)
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The interaction forces between particles in contact are modelled with a spring, a dash-pot 
and a friction slider, as shown in Figure 2.10. 
 
 

spring

friction slider dash-pot

 
 
 
Figure 2.10. The linear spring/dash-pot model. 

 
The contact forces are evaluated from the overlap between the particles and their relative 
velocities. Two particles a and b are in contact (i.e. have mutual overlap) if the distance 
between their centres is less than the sum of their radii: 
 
 bpapab RR ,, +<− rr  (2.39) 
 
The repulsive force acting on the particles is divided into a normal (Fn) and a tangential 
(Ft) component. The procedure of evaluating these contact forces starts with defining a 
normal unit vector, pointing from the mass centre of particle a to the mass centre of 
particle b as is presented in Figure 2.11. 
 

Figure 2.4: The scheme of linear-spring/dashpot soft-sphere model. (from Hoomans, Ph.D.
thesis, University of Twente, 2000. [43])

with Ra and Rb denoting the radii of the particles. The normal unit vector is defined
as

nab =
rb − ra

|rb − ra|
. (2.8)

The relative velocity of particles a and b is

vab = (va − vb) + (Raωa + Rbωb)× nab, (2.9)

where va and vb are particle velocities, and ωa and ωb the angular velocities. The
normal component of the relative velocity between particle a and b is

vab,n = (vab · nab)nab. (2.10)

The tangential component of the contact force is given out by equation (2.11),
where the Coulomb-type friction law is taking into account.

Fab,t =
{
−ktδt − ηtvab,t for |Fab,t| ≤ µf |Fab,n|
−µf |Fab,n|tab for |Fab,t| > µf |Fab,n|

(2.11)

Note that kt is the tangential spring stiffness, δt the tangential displacement, ηt the
tangential damping coefficient, vab,t the tangential relative velocity, µf the friction
coefficient, and tab the tangential unit vector. The calculation of the tangential
displacement δt is quite important and will be addresses in a separate section. The
tangential relative velocity is

vab,t = vab − vab,t. (2.12)

And the tangential unit vector tab is defined as

tab =
vab,t

|vab,t|
. (2.13)
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Figure 1. The coordinate system for contact forces calculation used in SPOGO. 

 
The relative velocity of particle a and b is  
 

( ) ( )ab a b a a b b abR R= − + + ×v v v ω ω n                                     (8) 
 
The normal component of relative velocity can be written as  

 
( ),n ab ab ab ab= ⋅v v n n                                                      (9) 

 
and the tangential component as   
 

, ,t ab ab t ab= −v v v                                                       (10) 
 
Thus we can define the tangential unit vector, 
 

,

,

t ab
ab

t ab

=
v

t
v

                                                             (11) 

 
 

Figure 2.5: The coordinate system used in the soft-sphere model.

Tangential displacement

Suppose at a given instant t0 the tangential displacement is δt0 , after an interval
dt = t− t0 the new tangential displacement will be [43]

δt = δt0 +
∫ t

t0

vab,t d t (2.14)

This expression, however, is only justified for 2D systems. In a 2D system, the par-
ticles are represented essentially by circles or disks, which are confined in a single
plane and the particle-particle contact occurs along a line, as shown in Figure 2.6.
So the tangential component of the relative velocity is always in the same plane and
no coordinate transformation is required. Eq.(2.14) is, in principle, only suitable for
the 2D situation.

In a 3D system, however, it becomes more complicated. The particle-particle
contact now occurs in a plane. The tangential component of the relative velocity is
always in this plane and vertical to the normal unit vector (according to the defini-
tion). Since the normal unit vector is not necessarily situated in the same plane at
any time, it is desired to transfer the old tangential displacement to the new contact
plane before we calculate the new tangential displacement. To this end, a 3D rota-
tion of the old tangential displacement is desired. As the tangential velocity vector
is always vertical to the normal unit vector, the 3D rotation can be done around the
vector determined by nab × n0,ab, as shown in Figure 2.7. So in a 3D situation, the
tangential displacement is determined by

δt = δt0H +
∫ t

t0

vab,t d t (2.15)
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Figure 2.6: The rotation of the contact plane during particle-particle collisions.

where the rotation matrix is

H =

 qh2
x + c qhxhy − shz qhxhz + shy

qhxhy + shz qh2
y + c qhyhz − shx

qhxhz − shy qhyhz + shx qh2
z + c

 . (2.16)

Note that vector h is given by

h =
nab × n0,ab

|nab × n0,ab|

and q, s and c are obtained through following expressions

c = cos ϕ

s = sinϕ

q = 1− c

ϕ = arcsin(|nab × n0,ab|)

Are Eqs.(2.15) and (2.16) sufficient to describe the tangential displacement dur-
ing particle-particle contact? In the absence of friction the answer is yes. When we
consider friction during particle-particle contact, as pointed out by Brendel and
Dippel [45], the use of Eqs.(2.15) and (2.16), may give rise to a unphysical behav-
ior in dense granular system. This is due to the allowance of an arbitrarily large
tangential displacement in Eqs.(2.15) and (2.16). In a dilute system, this is not a
big problem since the multiple-particle contacts do not happen frequently. In this
case, if the contacts finish the tangential displacements will be set to zero. In a
dense system, however, the multiple-particle contacts are very common and the
contact history for a specific particle could be very long. The long contact his-
tory causes a relatively large tangential displacement, which means that an extra
friction force should be taken into account. So to make our 3D code suitable for
simulating very dense systems, it is essential to seek for an improved approach to
account for the tangential displacement. Brendel and Dippel [45] proposed a so-
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2.1.3 Tangential displacement 
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Figure 3. The representation of tangential displacement in 3D soft-sphere model. 
 
 
In the 2D model developed by Hoomans, the displacement in tangential direction is given 
by, 

 

,t t ab t= ∆∑ξ v                                                          (15) 

 
However, in 3D situation, a more complicated method should be adopted to compute the 
tangential displacement. The reasons for such a change are twofold: firstly, the orientation 
of the normal unit vector will be changed; secondly, due to the rotational motion or sliding 
between particles (or particle and wall) there is an increment of the displacement in 
tangential direction (Strack and Cundall 1978). To consider the effect due to the change of 
the orientation of the normal unit vector, a coordinate transformation is required for the 
tangential displacement. As shown in Figure 3, the (old) tangential displacement at last time 
should be firstly map to the new contact plane (i.e. the plane determined by the new normal 
unit vector and the new tangential vector). To do so, the old tangential displacement must 

Figure 2.7: The transformation of tangential displacement vector.

lution for this problem. In this method, the tangential displacement during the
friction is calculated by

δt = µf |Fab,n|tab/kt

Therefore the tangential displacement in the current soft-sphere model is given by:

δt =

{
δt0H +

∫ t

t0
vab,t d t for |Fab,t| ≤ µf |Fab,n|

µf |Fab,n|tab/kt for |Fab,t| > µf |Fab,n|
(2.17)

Collision parameters

To solve the Eqs.(2.2) and (2.3), we still need to know five parameters: normal and
tangential spring stiffness kn and kt, normal and tangential damping coefficient ηn

and ηt, and the friction coefficient µf . To get a better understanding, we return to
Eq.(2.6) written in another form

meff
dδ2

n

dt2
= −knδn − ηn

dδn

dt
(2.18)

where meff is the reduced mass of the normal linear spring-dashpot system. This is
the well-known differential equation of the damped harmonic oscillator. Suppose
that v0 is the initial relative velocity, we can write down the solution of Eq.(2.18) as

δn(t) = (v0/Ω) exp(−Ψ t) sin(Ω t). (2.19)

So the relative velocity is

δ̇n(t) = (v0/Ω) exp(−Ψ t)(−Ψsin(Ω t) + Ω cos(Ω t)). (2.20)

where

Ω =
√

Ω2
0 −Ψ2,
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Ω0 =
√

kn/meff ,

Ψ = ηn/(2meff ).

The duration of a contact can be determined by δn(tcontact,n) = 0, which leads to

tcontact,n = π/Ω.

So the relative velocity just after a contact is

δ̇n(tcontact,n) = −v0 exp(−Ψ tcontact,n)

According to the definition, the coefficient of restitution is given by

en = − δ̇n(tcontact,n)
δ̇n(0)

= exp(−πΨ/Ω) (2.21)

Thus we can calculate the normal damping coefficient via

ηn =
−2 ln en

√
meff kn√

π2 + ln2 en

(en 6= 0) (2.22)

In case of en = 0, according to equation (2.21), we find that

Ω = 0,

which determines the damping coefficient by

ηn = 2
√

knmeff (2.23)

We can follow a similar procedure for the tangential spring-dashpot system. So
the tangential damping coefficient is determined by

ηt =
−2 ln et

√
m′

eff kt√
π2 + ln2 et

(et 6= 0) (2.24)

where m′
eff is the reduced mass for the tangential spring-dashpot system. It is ar-

gued that in a tangential direction both the rotational and translational momen-
tum must be considered and the reduced mass m′

eff is different from that in nor-
mal direction. The definitions of these two reduced mass are as follows:

meff =
mamb

ma + mb
(2.25)

m′
eff =

2
7
(

mamb

ma + mb
) (2.26)

In the case of particle-wall contact, we shall simply treat particle b as a big particle
that has an infinite radius, so we have

meff = ma (2.27)
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m′
eff =

2
7
ma (2.28)

In order to calculate the contact force between two particles, we now need five pa-
rameters: normal and tangential spring stiffness kn and kt, normal and tangential
coefficient of restitution en and et, and the friction coefficient µf . In should be
added here, however, that kn and kt in principle are related to the Young modulus
and Possion ratio of the solid material, so we are left with the specification of three
collision parameters en, et, and µf .

Integrating the equations of motion

Mathematically the equations of particle motion represent a set of initial value dif-
ferential equations. The evolution of particle positions and velocities can be traced
by using any kind of method for ordinary differential equations. The simple first-
order integrating scheme is widely used, which gives

va = v(0)
a + aa∆ t (2.29)

ra = r(0)
a + va∆ t (2.30)

θa = θ(0)
a + ωa∆ t (2.31)

where aa is the acceleration, ωa the rotational velocity of particle a. The superscript
(0) denotes the initial time. The first-order integration scheme, however, induces
errors for energy calculation. From Eq.(2.29), we have

(va − aa∆ t)2 = (va)2 + (aa∆ t)2 − (2va · aa∆ t) = (v(0)
a )2 (2.32)

So
1
2
(va)2 − (va · aa∆ t) + O(∆ t2) =

1
2
(v(0)

a )2 (2.33)

The first term on the left of Eq.(2.33) is the reduced kinetic energy of the particle,
the second term is the work due to all kinds of external forces, and the first term in
the right is the initial kinetic energy. Obviously, the extra energy of O(∆ t2) is always
positive, and will be introduced to the system for each time step solely due to the
numerical method.

In the past decades, a lot of methods have been devised to achieve better energy
conservation, for example, the Gear family of algorithms and the family of Verlet
algorithms [21]. In our 3D code, we have incorporated another type of integrating
method. This method was developed by Beeman and is possibly the most accurate
of the Verlet family of algorithms [21]. In this method, the position and velocity of
particle is calculated via

ra = r(0)
a + v(0)

a ∆ t + (
2
3
a(0)

a − 1
6
a(−1)

a )(∆ t)2 (2.34)

va = v(0)
a +

1
3
aa∆ t + (

5
6
a(0)

a − 1
6
a(−1)

a )(∆ t) (2.35)
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θa = θ(0)
a +

1
3
θa∆ t + (

5
6
θ(0)

a − 1
6
θ(−1)

a )(∆ t) (2.36)

where the superscript (−1) denotes the initial time in the previous time step. Note
that the Beeman-Verlet algorithm is not self starting. It requires the storage of the
old value of the acceleration a(−1). But this second-order integrating scheme leads
to an improved calculation of velocities and better energy conservation, compared
to the first order methods.

Time step

The time step ∆ t depends on the duration of a contact. Since there are two differ-
ent spring-dashpot systems in our current model, it is essential to assume

tcontact,n = tcontact,t (2.37)

So we have √
π2 + (ln en)2

kn/meff
=

√
π2 + (ln et)2

kt/m′
eff

(2.38)

If we further assume that en = et, then the relation between the normal and tan-
gential spring stiffness is

kt

kn
=

meff

m′
eff

=
2
7

(2.39)

Based on the discussion in previous sections, we can calculate the time step by

∆ t =
1

KN
tcontact,n =

1
KN

√
π2 + (ln en)2

kn/meff
(2.40)

where KN is the minimum number of steps during one contact. Our experience is
that KN must not be less than 5, and is normally in the range 15∼50. From Eq.(2.19)
we can calculate the maximum overlap

δmax = (v0/Ω0) exp[(−Ψ/Ω) arcsin(Ω/Ω0)], (2.41)

which occurs at
dδn(t)

dt
= 0.

To get a reasonable time step, we also need to check the maximum overlap which
should in general be less than 1% of the particle diameter.

Neighbor list and cell list

To perform simulations of relatively large systems for relatively long times it is es-
sential to optimize the computational strategy of discrete particle simulations. The
tricks of the trade originally developed in Molecular Dynamics can be applied to
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Figure 2.8: The scheme of neighbor list and cell list. The black is the particle of interest; the
grey are particles within the neighbor list cut-off.

discrete particle simulations to speed up the simulation. Hoomans [43] employed
the techniques including neighbor list and cell list in his discrete particle model.

The neighbor list contains a list of all particles within the cut-off sphere of a
particular particle, so that the separations do not need to be calculated at each
step, which is shown in Figure 2.8. The neighbor list cut-off scut−off should be
defined with care. A too small cut-off value may lead some neighboring particles
to be excluded from the list; On the other hand, however, a big cut-off value will
greatly reduce the computational efficiency.

To speed up the searching for neighbors, the particles in each fluid cell in this
research are put into a corresponding list. All neighbors of a particle will then be
found either in the cell containing the particle or an immediately adjacent cell, so
that the search for possible collision partners is a rapid process.

Interparticle van der Waals froce

The van der Waals force acting on particle a, Fvdw,a, is given by

Fvdw,a =
∑

b∈Neighbourlist

Fvaw,abnab. (2.42)

To calculate the interparticle van der Waals forces, we adopt the Hamaker scheme
[46] given by:

Fvdw,ab(S) =
A

3
· 2rarb(S + ra + rb)
[S(S + 2ra + 2rb)]

2

[
S(S + 2ra + 2rb)

(S + ra + rb)
2 − (ra − rb)2

− 1

]2

(2.43)

where S is the intersurface distance between two spheres, A the Hamaker constant,
and ra and rb the radii of the two spheres respectively. However, Eq.(2.43) exhibits
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4. Numerical Solution 

 
The numerical solution follows the lines of Kuipers et al. (1993) and will not be 
discussed in detail here. A finite difference technique, employing a staggered grid to 
ensure numerical stability, is used to solve the gas-phase conservation equations 3.1 and 
3.2. This implies that the scalar variables (p and ε) are defined at the cell centre and that 
the velocity components are defined at the cell faces as is shown in Figure 3.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. Lay out of the staggered grid. 
 
A pressure correction technique was employed to solve the set of partial differential 
equations. The model is capable of performing transient two-dimensiona l calculations in 
a Cartesian or an axi-symmetrical geometry. In the simulations reported in this work only 
the Cartesian option was used. 
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Figure 2.9: Lay-out of the staggered grid.

an apparent numerical singularity that the van der Waals interaction diverges if
the distance between two particles approaches zero. In reality such a situation will
never occur, because of the short-range repulsion between particles. In the present
model, we have not included such a repulsion, however, we can avoid the numeri-
cal singularity by defining a cut-off (maximal) value of the van der Waals force be-
tween two spheres. In practice it is more convenient to use the equivalent cut-off
value for the intersurface distance, S0, instead of the interparticle force.

2.3.3 Gas dynamics

Governing equations

The gas phase is treated as a continuum phase, the dynamics of which can be de-
scribed by a set of volume-averaged Navier-Stokes equations [19]. From mass con-
servation, we have

∂(ερg)
∂t

+∇ · (ερgu) = 0 (2.44)

where ρg is the gas density, ε the local porosity, and u the gas velocity. Momentum
conservation gives that

∂(ερgu)
∂ t

+∇ · (ερguu) = −ε∇ p− SP −∇ · (ετ ) + ερgg (2.45)

where p is the gas phase pressure, SP the source term, and g the gravitational ac-
celeration. The source term SP is defined as

SP =
1
V

∫ Npart∑
a=0

βVa

1− ε
(u− va)δ(r− ra) d V (2.46)
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5. Boundary Conditions 

 
For the incorporation of the boundary conditions a flag matrix is used which allows 
boundary conditions to be specified for each single cell. A variety of boundary conditions 
can be applied by specification of the value of the cell flag fl(i,j) which is associated with 
the relevant boundary condition for that cell(i,j). The typical set of boundary conditions 
used in the simulations performed in this study is shown in Figure 3.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.2. Cell flags for the boundary conditions for the hydrodynamic model 
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Figure 2.10: The typical set of boundary conditions used in 2D simulations.

Here V represents the local volume of a computational cell and Va the volume of
a particle. The δ-function ensures that the drag force acts as a point force at the
(central) position of this particle. β is the momentum transfer coefficient.

Constitutive equations

The gas phase density ρg is calculated via the equation of state of an ideal gas law:

ρg =
pMg

RT
(2.47)

where R is the universal gas constant (8.314 J/(mol·K)), T the temperature, and Mg

the molecular mass of the gas. The equation of state of the ideal gas can be applied
for most gases at ambient temperature and pressure. The viscous stress tensor τ
is assumed to depend only on the gas motion. The general form for a Newtonian
fluid [47] is used in our model:

τ = −(λg −
2
3
µg)(∇ · u)I + µg(∇u + (∇uT )) (2.48)

with λg the gas phase bulk viscosity, µg the gas phase shear viscosity, and I the unit
tensor. In the simulations the bulk viscosity of the gas phase is set equal to zero
which is allowed for gases [47].

Note that no turbulence modelling was taken into account. For dense gas-solid
fluidization this can be justified since the turbulence is completely suppressed in
the particle bed due to the very high solids volume fraction.
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Table 2.2: Comparison between hard- and soft-sphere models.
fl(i, j, k) the type of cell

1 Interior cell, no boundary conditions have to be specified
2 Impermeable wall, free slip boundaries
3 Impermeable wall, no slip boundaries
4 Influx cell, velocities have to be specified
5 Prescribed pressure cell, free slip boundaries
6 Continuous outflow cell, free slip boundaries
7 Corner cell, no boundary conditions have to be specified

Numerical solution

The numerical solution follows the lines of Kuipers et al. [19] and will not be dis-
cussed in detail here. A finite difference technique, employing a staggered grid to
ensure numerical stability, is used to solve the gas-phase conservation equations.
The scalar variables (p and ε) are defined at the cell center, and the velocity com-
ponents are defined at the cell faces as is shown in Figure 2.9.

A pressure correction technique was employed to solve the discretised set of
partial differential equations. The solution method can easily be extended to three
dimensions and will therefore not be discussed here.

Boundary conditions

The boundary conditions are taken into account by utilizing the flag matrix con-
cept, which allows different boundary conditions to be applied for each single cell.
A variety of boundary conditions can be applied by specification of the value of
the cell flag fl(i, j, k), which defines the relevant boundary condition for the corre-
sponding cell (i, j, k). A typical set of boundary conditions used in a 2D simulation
is shown in Figure 2.10.

In Table 2.2 we explain the meaning of each type of boundary condition. Nor-
mally the bottom distributor is defined as influx cells formulated by fl(i, j, k) = 4,
where the void fraction is set to a constant value of 0.4.

2.3.4 Interphase coupling

For dense gas-solid two-phase flows, a four-way coupling is normally required.
However, the coupling between particles is managed in a natural way in discrete
particle models. The task is therefore to find a two-way coupling that satisfies New-
ton’s third law. This technique involves the calculation of the void fraction and the
incorporation of fluid-particle interaction in the momentum conservation equa-
tion for the gas-phase.
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Two-way coupling is achieved via the calculation of the void fraction and the 
incorporation of an interaction term in the momentum conservation equation for the gas-
phase (equation 3.2). In the following paragraphs it is explained how two-way coupling is 
achieved in the model used in this work. 
 
6.1 Void fraction 

6.1.1 Calculation of the void fraction in 2-D 

The solution of equations 3.1 and 3.2 requires specification of the void fraction (ε) which 
can be obtained from the discrete particle model. Since the particle positions are known 
the void fraction ε(i,j) can be calculated based on the area occupied by the particles in 
that cell i,j. Since the void fraction is an important parameter which considerably 
influences the motion of the gas phase, a detailed check for overlap was performed in 
which multiple cell overlap was taken into account as illustrated in Figure 3.3. In this 
figure a case is presented where a particle overlaps four different grid cells. The distances 
from the particle centre to the nearest boundaries of the grid cells are indicated by δ1 and 
δ2. 

 

 

 

 

 

 

Figure 3.3. Multiple particle-cell overlap. 
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Figure 2.11: The multiple cell overlap of a single particle. (from Hoomans, Ph.D. thesis, 2000,
University of Twente)

Void fraction calculation

From the position of each particle, we can calculate its contribution to the local
solid volume fraction εp in any specified fluid cell. This local void fraction ε = 1.0−
εp, is one of the key parameters that controls the momentum exchange between
the phases. Thus the calculation of the void fraction is essential in the interphase
coupling.

For a 2D situation, the void fraction ε(i, j) can be calculated based on the area
occupied by the particles in the cell of interest. A particle can be present in multi-
ple cells, however, as shown in Figure 2.11. Hoomans [24] developed a method to
account for the multiple cell overlap. The area of Aii,jj is given by

Aii,jj = δ1δ2 −
1
2
Rp

[
C1 + C2 −Rp

(
acos

δ1

Rp
− asin

δ2

Rp

)]
, (2.49)

and area Ai,jj by

Aii,jj =
1
2
π R2

p − δ1δ2 +
1
2
Rp

[
C1 − C2 −Rp

(
acos

δ1

Rp
− acos

δ2

Rp

)]
. (2.50)

The area Aii,j can be calculated following Eq.(2.50). Note that the two constants
are defined as

C1 = δ1

√
1−

(
δ1

Rp

)2

,

and

C2 = δ2

√
1−

(
δ2

Rp

)2

.

However, the void fraction calculated in this way is based on a two-dimensional
distribution of (circles) disks that is inconsistent with the applied empiricism in the



2.3 Euler-Lagrange model ‖ 37

calculation of the drag force exerted on a particle. To correct for this inconsistency
the void fraction calculated on the basis of area (ε2D) is transformed into a three-
dimensional void fraction (ε3D) using the following equation:

ε3D = 1− 2√
π
√

3(1− ε2D)3/2
. (2.51)

In a true 3D situation, we can calculate the void fraction based on the real vol-
ume of particles. However, no analytical expression is available for volume Vii,jj .
Hoomans [24] introduced an approximation to calculate this 3D volume. Suppose
a particle overlaps with two cells, the volume of a spherical cap can be calculated
exactly by

Vcap =
π(Rp − δ1)2

3
(2Rp + δ1), (2.52)

with δ1 the distance from the center of the particle to the cell boundary. Vii,jj can
thus be approximated by

Vii,jj ≈
Vjj

Vp

Vii

Vp
Vp. (2.53)

Note that
Vjj = Vii,jj + Vi,jj , (2.54)

and
Vii = Vii,jj + Vii,j , (2.55)

Fluid-particle interaction

The fluid-particle interaction can be divided into two parts in this research: the
drag force and the pressure gradient.

Drag force We start by introducing a more general form of the drag force,

Fd = 3πµgε
2 dp (u− v) f(ε)

where µg is the viscosity of the gas phase, ε the porosity, dp the diameter of par-
ticle, u the local gas velocity, and f(ε) is defined as the porosity function. The
common-used drag model in the simulation of gas-fluidized beds is the Ergun-
Wen-Yu model [48, 49], the porosity function of which is given by

f(ε) =
150(1− ε)

18ε3
+

1.75
18

Rep

ε3

for ε < 0.8 [48] and

f(ε) =
Cd

24
Repε

−4.65

for ε ≥ 0.8 [49]. The drag coefficient Cd is a function of the particle Reynolds num-
ber and given by (in the case of Rep < 1000):

Cd =
24

Rep
(1 + 0.15Re0.687

p )
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Figure 2.12: The scheme of volume weight average.

The validity of this model for low Reynolds number Rep has been questioned in
recent years. Note that the typical Rep of Geldart A particles for a fluidized bed is
typically less than O(1). Recent results derived from lattice Boltzmann simulations
show that a more accurate drag model, for example the model introduced by Koch
and Sagani [50], should be used. In this model, the porosity function is given by

f(ε) =
10(1− ε)

ε3
+ 0.7

for ε < 0.6 and

f(ε) =
1 + 3

√
0.5(1− ε) + (135/64)(1− ε) ln(1− ε) + 17.14(1− ε)
1 + 0.681(1− ε)− 8.48(1− ε)2 + 8.16(1− ε)3

for ε ≥ 0.6.

Pressure gradient The pressure gradient in the first term on the right hand
side of Eq.(2.45) is calculated by using a second order approximation. The local
value is obtained from an volume-weighted averaging technique using the values
of the pressure gradients at the eight surrounding grid nodes. This technique is
also used to obtain local gas velocities and local void fractions at the position of the
center of the particle. The volume-weighted averaging technique used to obtain
the local averaged value Q̄ of a quantity Qijk from the eight surrounding compu-
tational nodes is shown in Figure 2.12. The local averaged value is calculated as
follows:

Q̄ =
Q1V8 + Q2V7 + Q3V6 + Q4V5 + Q5V4 + Q6V3 + Q7V2 + Q8V1

DX · DY · DZ
(2.56)
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where:
V1 = δxδyδz

V2 = (DX − δx)δyδz

V3 = δx(DY − δy)δz

V4 = (DX − δx)(DY − δy)δz

V5 = δxδy(DZ − δz)

V6 = (DX − δx)δy(DZ − δz)

V7 = δx(DY − δy)(DZ − δz)

V8 = (DX − δx)(DY − δy)(DZ − δz)

The distances δx, εy and δz, necessary in this averaging technique, are calculated
from the position of the particle in the staggered grid.

2.3.5 Energy budget

To relate our current work to the kinetic theory of granular flows, it is very useful to
analyze the detailed information of the energy evolution in the system. The total
energy balance of the system is obtained by calculating all relevant forms of energy
as well as the work performed due to the action of external forces.

• Potential energy

Ep = −
Npart∑
a=0

ma(g · ra). (2.57)

• Kinetic energy

Ek =
1
2

Npart∑
a=0

ma(va · va). (2.58)

• Rotational kinetic energy

Er =
1
2

Npart∑
a=0

Ia(θa · θa). (2.59)

• Potential energy of the normal spring

Esn =
1
2

Npart∑
a=0

∑
b

knδ2
ab,n. (2.60)

where b > a and b ∈ the contactlist of a, δab,n the overlap between particle a
and b.
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• Potential energy of the tangential spring

Est =
1
2

Npart∑
a=0

∑
b

kt(δab,t · δab,t). (2.61)

where b > a and b ∈ the contactlist of a, δab,t the relative tangential displace-
ment between particle a and b.

The work due to the action of external forces has to be considered as well, and can
be calculated as follows:

• Work due to the drag force

Wd =
∫ Npart∑

a=0

(
β Va

(1− ε)
(u− va)− Va∇ p) · vadt. (2.62)

• Work due to the van der Waals forces

Wv =
∫ Npart∑

a=0

(Fvdw · va) dt. (2.63)

Finally the energy dissipated during the particle-particle contact process has to be
considered and is determined by:

• Energy dissipated by the normal spring

Edn =
∫ Npart∑

a=0

∑
b

ηn(vab,n · vab,n)dt. (2.64)

• Energy dissipated by the tangential spring

Edt =
∫ Npart∑

a=0

∑
b

ηt(vab,t · vab,t)dt. (2.65)

• Energy dissipated by the friction between particles

Edf =
∫ Npart∑

a=0

∑
b

(µf |Fab,n|tab · vab,t)dt. (2.66)

where b > a and b ∈ the contactlist of a.

Finally we give the expression for the (total) energy balance of the system:

Et = Ep + Ek + Er + Esn + Est −Wd −Wv + Edn + Edt + Edf . (2.67)
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2.4 Euler-Euler model

2.4.1 Two fluid model

In the Euler-Euler models, i.e. the two-fluid models, it is assumed that both the gas
and the solid phase are interpenetrating continua. This continuous approach is
especially useful and computationally cost effective when the volume fractions of
the phases are comparable, or when the interaction within and between the phases
plays a significant role in determining the hydrodynamcis of the system. As dis-
cussed before, it is not difficult to numerically solve the governing equations for
the gas phase utilizing well-established CFD techniques. The challenge is to estab-
lish a complete hydrodynamics description of the particulate phase.

Anderson and Jackson [51–53] and Ishii [54] have separately derived the gov-
erning equations for two-fluid models from first principles. Although the inherent
assumptions used in deriving these governing equations are different, it has been
shown that they give essentially similar predictions at an engineering scale. The
two-fluid models differ significantly from each other as different closures for the
solids stress tensor are used.

Classification of two-fluid models

There are basically three types of approaches to define the solid stress tensor. In
the early hydrodynamic models the particulate phase parameters, especially the
viscosity, is defined empirically as a constant. Examples are the work done by Jack-
son and his co-workers [51, 55], Kuipers et al., [19], and Tsuo and Gidaspow [56].
The advantage of this model is its simplicity, but it does not take into account the
underlying characteristics of this quantity.

In another type of models pioneered by Elghobashi and Abou-Arab [57] and
Chen [58], a particle turbulent viscosity, derived by extending the concept of tur-
bulence from the gas phase to the solid phase, has been used. This is the so-called
k − ε model, where the k corresponds to the granular temperature equation and ε
is a dissipation parameter for which another conservation law is required. By cou-
pling with the gas phase k − ε turbulence model, Zhou and Huang [59] developed
a k − ε model for turbulent gas-particle flows. The k − ε models do not include
the effect of particle-particle collisions, so these models are restricted to dilute gas-
particle flows.

Significant contributions to the modeling of gas-solid flows have been made by
Gidaspow and co-workers [60], who combined the kinetic theory for the granular
phase with continuum representations for the particle phase. There are a number
of other studies using this approach. Sinclair and Jackson [61] predicted the core-
annular regime for steady developed flow in a riser. Ding et al. [62] simulated a
bubbling fluidized bed. Transient simulations and comparisons to data were done
by Samuelsberg and Hjertager [63]. Nieuwland et al. [64] investigated a circulating
fluidized bed using the kinetic theory of granular flows. Detamore et al [65] have
performed an analysis of scale-up of circulating fluidized beds using kinetic theory.
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One of the strengths of the kinetic theory of granular flows, although still under
development, is that it can offer a very clear physical picture with respect to the
key parameters (e.g. particle pressure, particle viscosity and other transport coeffi-
cients) that are used in the two-fluid models. The two-fluid models based on KTGF
requires less ad-hoc adjustment than other two types of models. Therefore, it is the
most promising framework for modeling engineering scale fluidized beds.

Two-fluid model for Geldart A particles

In the past decades, the two-fluid models based on the kinetic theory of granular
flows (KTGF) saw the rapid development and wide applications in different solid-
gas two-phase flows. However, most of the studies have focused on systems with
either large particles (Geldart B or D particles) or dilute systems (circulating flu-
idized beds). Very few studies have been performed for dense systems of fine par-
ticles, especially Geldart A particles. The standard two-fluid model has so far failed
to predict even the bubbling fluidization of Geldart group A particles. Several re-
searchers tried to predict the bed expansion of FCC particles using two-fluid CFD
models. Ferschneider and Mege [66] found a major over-prediction of bed expan-
sion in a bubbling bed of FCC particles and Bayle et al. [67] obtained the same
results in a turbulent bed of FCC particles. Recently McKeen and Pugsley [68] used
the two-fluid CFD code MFIX to simulate a freely bubbling bed of FCC catalyst for
U0 = 0.05−0.2 m/s and compared their simulation results with ECT data. In accor-
dance with findings of Ferschneider and Mege [66], McKeen and Pugsley [68] also
found that the standard CFD model greatly over-predicted bed expansion with-
out any modifications of the drag closures. By using a scale factor of 0.25 for the
common-used gas-solids drag laws, they found that their simulation results are in
accordance with experimental observations. They argued that this is due to the
formation of clusters with a size smaller than the CFD grid size. Such small scale
clusters have not been reported before, in particular for particles with a size of 75
µ m. Although the van der Waals force can play a role in the fluidization of Gel-
dart A particles, it is not clear how this force affects the gas-solid drag. The influ-
ence of the cohesion on the KTGF has not been carefully checked so far. The KTGF
was originally developed based on the kinetic theory of dense gases by taking into
account the inelasticity during particle-particle collisions [12]. Recently Kim and
Arastoopour [69] tried to extend the kinetic theory to cohesive particles, however,
their final expression for the particular phase stress is very complex.

In the chapter 5 of this thesis, we will investigate the effect of cohesive forces on
the KTGF closures by use of the soft-sphere discrete particle model, which proved
to be a powerful and useful tool to study the effect of detailed particle-particle in-
teraction models.
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2.4.2 Governing equations

In the two-fluid model, both the gas and particulate phase are considered as a con-
tinuum. The continuity and momentum equations for the gas phase are given by

∂(ερg)
∂t

+ (∇ · ερgu) = 0 (2.68)

∂(ερgu)
∂t

+ (∇ · ερguu) = −ε∇p− β(u− v)−∇ · (ετ) + ερgg (2.69)

whereas the continuity and momentum equations for particle phase are given by

∂(εsρs)
∂t

+ (∇ · εsρsu) = 0 (2.70)

∂(εsρsu)
∂t

+ (∇ · εsρsuu) = −εs∇p + β(u− v)−∇ ps −∇ · (εsτ) + εsρsg (2.71)

where εs = 1− ε.

2.4.3 Kinetic theory of granular flows

The kinetic theory of elastic particles has been well documented by Chapman and
Cowling in their classical textbook [5]. The kinetic theories of granular flows, which
have appeared in the literature, differ only slightly from that of the elastic particles.
For a system of smooth hard spheres of mass m and radius rp, the evolution of the
one-particle distribution function f (1)(r,v, t) can be described by the Boltzmann
equation

∂ f (1)(r,v, t)
∂ t

+ v · ∇ f (1)(r,v, t) = J [r,v|f(t)] (2.72)

where f (1)(r,v, t)drdv represents the probable number of particles in a volume dv
at the position r with the velocity ranging from v to v + dv at time t. J is the Boltz-
mann collision operator,

J [r,v1|f(t)] = r2
p

∫
dv2

∫
AΘ(k̂ · v12)(k̂ · v12) dk̂ (2.73)

with
A = e−2f (1)(r,v

′

1, t)f (1)(r,v
′

2, t)− f (1)(r,v1, t)f (1)(r,v2, t).

where k̂ is the unit vector alone the line connecting the center of particle 2 to par-
ticle 1, v12 = v1 − v2 is the relative velocity, Θ is the Heaviside step function. The
velocities v

′

1 and v
′

2 are the velocities of particles just before collision, and v1 and
v2 are post-collisional velocities.

The hydrodynamic quantities such as the number density, average velocity, and
granular temperature, can be defined as the moments of the single-particle distri-
bution function:

n(r, t) =
∫

f (1)(r,v, t)dv (2.74)
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u(r, t) =
1

n(r, t)

∫
f (1)(r,v, t)vdv (2.75)

T (r, t) =
2

3n(r, t)kB

∫
f (1)(r,v, t)

1
2
m(v − u)2dv (2.76)

where kB is the Boltzmann constant. Kinetic theory gives the connection to the
continuum equations for mass, momentum, and kinetic energy, which take the
following forms:

∂ n

∂ t
+∇ · (nu) = 0, (2.77)

∂ u
∂ t

+ u · ∇u = fb −
1

mn
∇ · p, (2.78)

∂ T

∂ t
+ u · ∇T = − 2

3nkB
(∇ · q + p : ∇u)− γ. (2.79)

Note that fb is the body force per unit mass, and γ = −χ( 1
2mv2) is the rate of dis-

sipation per unit volume. In Eqs.(2.78) and (2.79), the pressure tensor p and heat
flux q are given by

p(r, t) =
∫

f (1)(r,v, t)m(v − u)(v − u)dv

q(r, t) =
∫

f (1)(r,v, t)
m|v − u|2

2
(v − u)dv

Normally the evolution of f (1)(r,v, t) depends on the joint probability distribution,
f (2)(r1,v1; r2,v2; t), which is given in the following expression:

f (2)(r1,v1; r2,v2; t) = g(rp, εs)f (1)(r2 − rpk̂,v1, t)f (1)(r2,v2, t) (2.80)

where g(rp, ν) is the radial distribution function, εs the fraction of solid particles.
Instead of the full radial distribution function g(rp, εs), it is often sufficient to use
the value at r = rp, i.e., we define a new function χ(εs):

χ(εs) = εs g(rp, εs).

Note that for very dilute system, g(rp, εs) should equal 1.
Eqs.(2.77-2.79) can only describe granular flows when the pressure tensor, the

heat flux, and the rate of dissipation are expressed in terms of the macroscopic
fields (”closures”). For the pressure tensor, it is assumed that

p = p− (λ− 2
3
µ)Tr(E)I− 2µE.

where I is the unit tensor, and Tr denotes trace, whereas the components of E are
given by:

Eij =
1
2
(
∂ vj

∂ xi
+

∂ vi

∂ xj
).
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For the heat flux q we assume that Fourier’s law is valid,

q = −κ∇T

By using these expressions, the Eqs.(2.77-2.79) becomes a closed set, and can
be solved for ρ, u, and T . The parameters which are introduced by closing the ex-
pressions are transport coefficients: κ, λ, µ, γ, and p. The main challenge of kinetic
theory is to find reliable expressions for these transport coefficients. In the next
section we will summarize the most widely used results.

2.4.4 Closure relations

Elastic particles

Elastic particles have been studied intensively in the past century. A classical text-
book on this subject was written by Chapman and Cowling in 1939 [5].
Dilute system For sufficient low density, we can use the well-known ideal gas law:

p0 = nkBT. (2.81)

The shear viscosity µ0 can be obtained by

µ0 =
5

64r2
p

√
kBmT

π
. (2.82)

The thermal conductivity κ0 is given by

κ0 =
5
2
cvµ0,

where the specific heat at constant volume is defined as

cv =
3kB

2m
.

Thus we have

κ0 =
75mkB

256r2
p

√
mkBT

π
. (2.83)

Dense system For dense system, the transfer of momentum and energy occurs not
only via the movement of the particles, but also via the collisions. Enskog first stud-
ied the effect of collisions for rigid elastic spheres. Based on the standard Enskog
theory (SET), the equation of state is written as [5]

p1 = nkBT (1 + χ bρ.) (2.84)

with bρ = 16nπ r3
p/3 = 4εs. The shear viscosity and the thermal conductivity are

given by

µ1 = µ0

(
1

χ bρ
+

4
5

+ 0.7614χ bρ

)
bρ. (2.85)
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and

κ1 = κ0

(
1

χ bρ
+

6
5

+ 0.7574χ bρ

)
bρ. (2.86)

respectively.
The term χ bρ has been replaced by the excess compressibility y, through which

the equations take the following form:

p1 = p0(1 + y), (2.87)

µ1 = 4µ0εs(
1
y

+
4
5

+ 0.7614y), (2.88)

and

κ1 = 4κ0εs(
1
y

+
6
5

+ 0.7574y). (2.89)

Inelastic particles

For the inelastic particles, there is a general agreement on the form of the particle
pressure in the literature, given by Lun et al. [12] as

p3 = nkBT (1 + 2(1 + e)εs χ). (2.90)

As can be seen, in the case of e = 1 Eq.(2.90) will reduce to (2.84). We rewrite
Eq.(2.90) as follows:

p3 = nkBT (1 + 4εs χ + 2(e− 1)εs χ) = p0(1 + y + 2(e− 1)y). (2.91)

If we replace y + 2(e− 1)y by a new term y3, we get

p3 = p0(1 + y3). (2.92)

Then the equations for the shear viscosity and thermal conductivity are found to
take the same form as those for the elastic particles [60]

µ3 = 4µ0εs(
1
y3

+
4
5

+ 0.771y3),

κ3 = 4κ0εs(
1
y3

+
6
5

+ 0.767y3),

or with slightly different prefactors [64]

µ3 = 4.064µ0εs(
1
y3

+
4
5

+ 0.761y3),

κ3 = 4.10052κ0εs(
1
y3

+
6
5

+ 0.748y3),
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3
A 2D Numerical Study of the Fluidization

Behavior of Geldart A Particles Using a Discrete
Particle Model

ABSTRACT

This chapter reports on a numerical study of fluidization behavior of Geldart A parti-
cles by use of a 2D soft-sphere discrete particle model. Some typical features, includ-
ing the homogeneous expansion, gross particle circulation in the absence of bubbles,
and fast bubbles, can be clearly displayed if the interparticle van der Waals forces
are relatively weak. An anisotropy of the velocity fluctuation of particles is found in
both the homogeneous fluidization regime and the bubbling regime. The homoge-
neous fluidization is shown to represent a transition phase resulting from the compe-
tition of three kinds of basic interactions: the fluid-particle interaction, the particle-
particle collisions (and particle-wall collisions) and the interparticle van der Waals
forces. In the bubbling regime, however, the effect of the interparticle van der Waals
forces vanishes and the fluid-particle interaction becomes the dominant factor de-
termining the fluidization behavior of Geldart A particles. This is also evidenced by
the comparisons of the particulate pressure with other theoretical and experimental
results.

Based on: M. Ye, M. A. van der Hoef, and J.A. M. Kuipers, 2004. A numerical study of fluidization behav-

ior of Geldart A particles using a discrete particle model, Powder Technology, 139(2):129-139.

M. Ye, M. A. van der Hoef, and J.A. M. Kuipers, 2004. Discrete particle simulation of the homogeneous

Fluidization of Geldart A particles. in Proc. Fluidization XI, May 9-14, Ischia, Italy.
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3.1 Introduction

It is well known that the fluidization behavior of Geldart A particles in gas-fluidized
beds is quite different from that of Geldart B particles [1]. Geldart B particles
will bubble immediately when the superficial gas velocity U0 exceeds the mini-
mum fluidization velocity Umf whereas Geldart A particles display an interval of
non-bubbling expansion (homogeneous fluidization) between Umf and the min-
imum bubbling velocity, Umb. Despite many detailed phenomenological investi-
gations [1–4], the mechanism behind the homogeneous fluidization, however, has
not yet been fully understood.

From the purely theoretical viewpoint, the homogeneous fluidization is closely
related to the stability of continuum field conservation equations that govern the
solid-gas two-phase flow inside a fluidized bed [5]. Jackson and his co-workers [6,7]
were among the pioneers who tried to analyze this stability. They found that in
addition to the inertia and drag force, a new term similar to the gas pressure is re-
quired to describe the motion of the particulate phase, otherwise the bed would be
always unstable [7]. This new term, which was found to be a function of the poros-
ity [8], has been considered as the particulate pressure. Unlike the pressure of a
liquid or a gas, the particulate pressure is somewhat artificial since it has no clear
physical meaning. However, the importance of the particulate pressure has been
widely recognized and has prompted an ongoing discussion about its physical ori-
gin.

Foscolo and Gibilaro [9], in the spirit of Verloop and Heertjes [10], suggested
that a shock wave due to the change of porosity (i.e. when porosity wave rises faster
than the velocity of the so-called equilibrium disturbance) is the dominant factor
that causes the instability of the homogeneous fluidization regime. They related
the origin of the particulate pressure to the propagation of some kind of elastic-
ity wave and defined an elasticity modulus to account for the stability of the bed.
Although Foscolo and Gibilaro were able to predict the minimum bubbling points
in many cases, not all phenomenona associated with the homogeneous fluidiza-
tion in a gas fluidized-bed [11] can be explained. On the other hand, Rietema and
his co-workers [4, 12] proposed that the interparticle forces should be responsi-
ble for the homogeneous fluidization behavior of small particles, rejecting Foscolo
and Gibilaro’s purely hydrodynamic analysis. Rietema and his co-workers [4,12] ar-
gued that the concept of effective elastic modulus could be related to some kind of
mechanical structure induced by the interparticle van der Waals forces. Although
the viewpoint of Rietema and his co-workers [4, 12] has a clear physical basis, it
proves difficult to find a quantitative relation between the interparticle van der
Waals forces and the macroscopic physical quantities of the bed. The reasons are
twofold: Firstly, up to date there is no technique that can measure the detailed mi-
croscopic structure inside a gas-fluidized bed; Secondly, the interparticle van der
Waals forces are short-range forces and strongly depend on the shape and surface
properties of particles.

In this chapter, a 2D soft-sphere discrete particle model (DPM) has been used to
simulate the fluidization behavior of Geldart A particles. One of the features of such
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models is that realistic particle-particle (and particle-wall) interactions, such as the
interparticle van der Waals forces and particle-particle collisions, can be readily in-
corporated. Since this kind of models have been proved very useful to study the
complicated gas-solid flows in a gas-fluidized bed [13–15] so far, it allows for in-
vestigating the physical mechanism of the homogeneous fluidization. The draw-
back of such a detailed description, however, is the small size of the beds employed
in the simulations. In this respect, the model should be regarded as a ”learning”
model.

3.2 Model description

The gas flow is modeled by the volume-averaged Navier-Stokes equations [18]

∂(ερg)
∂t

+ (∇ · ερgu) = 0 (3.1)

∂(ερgu)
∂t

+ (∇ · ερguu) = −ε∇p− Sp −∇ · (ετ) + ερgg (3.2)

where ε is the porosity, and ρg, u, τ and p are the density, velocity, viscous stress
tensor, and pressure of the gas phase respectively. The source term Sp is defined as

Sp =
1
V

∫ Npart∑
a=0

βVa

1− ε
(u− va)δ(r− ra)dV.

Note that V is the volume of the fluid cell, Va the volume of particle, va the par-
ticle velocity, and Npart the number of particles. The δ-function ensures that the
drag force acts as a point force in the (central) position of a particle. To calculate
the interphase momentum exchange coefficient β, we employed the well-known
Ergun equation [19] for porosities lower than 0.8 and Wen and Yu correlation [20]
for porosities higher than 0.8.

The gas phase equations are solved numerically with a finite differencing tech-
nique, in which a staggered grid was employed to ensure numerical stability. The
porosity is calculated according to the method of Hoomans et al. [14],

ε = 1− 2√
π
√

3
(1− ε2D)3/2 (3.3)

where ε2D is the local 2D void fraction calculated from the area occupied by par-
ticles. The equations of motion of an arbitrary particle, a, follow from Newton’s
second law

ma
d2ra

dt2
= Fcont,a + Fvdw,a +

Vaβ

1− ε
(u− va)− Va∇p + mag (3.4)

IaΩa = Ia
dωa

dt
= Ta (3.5)
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where ma is the mass of the particle, Fcont,a the contact force, Fvdw,a the van der
Waals force, Ta the torque, Ia the moment of inertia, Ωa the rotational acceleration,
and ωa the rotational velocity. Eq.(3.1) and Eq.(3.2) are solved numerically using a
first-order time-integration scheme,

ra = r(0)
a + va4t

va = v(0)
a + aa4t

ωa = ω
(0)
a + Ωa4t

(3.6)

The contact force between two particles (or a particle and a sidewall) is cal-
culated by use of the soft-sphere model developed by Cundall and Strack [21]. In
that model, a linear-spring and a dashpot are used to formulate the normal contact
force, while a linear-spring, a dashpot and a slider are used to compute the tangen-
tial contact force, where the tangential spring stiffness is two seventh of the normal
spring stiffness [22]. Also we employed two different restitution coefficients. Thus
a total of five parameters are required in order to describe the contact force in our
model: the normal and the tangential spring stiffness, the normal and the tangen-
tial restitution coefficient, and the friction coefficient.

To calculate the interparticle van der Waals forces, we adopt the Hamaker
scheme [23, 24]:

Fvdw,ab(S) =
A

3
· 2r1r2(S + r1 + r2)
[S(S + 2r1 + 2r2)]

2

[
S(S + 2r1 + 2r2)

(S + r1 + r2)
2 − (r1 − r2)2

− 1

]2

(3.7)

where S is the intersurface distance between two spheres, A the Hamaker constant,
and r1 and r2 the radii of the two spheres respectively. However, Eq.(3.7) exhibits
an apparent numerical singularity that the van der Waals interaction diverges if
the distance between two particles approaches zero. In reality such a situation will
never occur, because of the short-range repulsion between particles. In the present
model, we have not included such a repulsion, however, we can avoid the numeri-
cal singularity by defining a cut-off (maximal) value of the van der Waals force be-
tween two spheres. In practice it is more convenient to use the equivalent cut-off
value for the intersurface distance, S0, instead of the interparticle force.

3.3 Numerical simulation

3.3.1 Input parameters

We consider a system consisting of monodisperse spheres with a diameter of 100
µm and a density of 900 kg/m3, which are typically group A particles according to
Geldart’s classification [1]. The input parameters used in the simulations are shown
in Table 1. The cut-off value of the intersurface distance between two spheres, S0,
should be less than the intermolecular center-to-center distance [24]. Here a com-
monly used value S0= 0.4 nm is employed [25, 26]. Air is taken as the continuous
phase.
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Figure 3.1: The inlet conditions for the superficial gas velocity of the simulations. Three
different Hamaker constants have been used.

3.3.2 Procedure and initial condition

In principle, the Hamaker constant A can be related to the material properties such
as the polarizability. In this research, however, the primary goal is to investigate the
effect of the interparticle van der Waals forces on the homogeneous fluidization. To
this end, three simulations have been conducted using three different levels of van
der Waals forces, where the Hamaker constants A equals 10−20, 10−21 and 10−22

J respectively. In each simulation, we follow the approach adopted by Rhodes et
al. [27], in which the superficial gas velocity is increased from below the minimum
fluidization velocity Umf to above the minimum bubbling velocity Umb step by step.
If the interparticle van der Waals forces are relatively weak (A = 10−21 and 10−22 J),
the simulation typically runs for 1 second in real time, for each velocity. In case of
strong van der Waals force (A= 10−20 J), the simulation time for each velocity will
be adjusted to ensure that the particles and fluid have enough time to interact with
each other. Figure 3.1 shows the superficial gas velocities and the corresponding
physical time.

A packed bed, typically used as the initial state, has been generated as follows:
Firstly, the particles were placed at the sites of a SC lattice, and the superficial gas
velocity was set to a relatively large value (0.04 m/s); When the bed bubbles, the
superficial gas velocity is set to zero, which causes the particles to drop. The initial
state then has been defined as the state where the pressure drop across the bed
tends to zero and the bed height becomes stable. The average porosity of this initial
state is 0.37.
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Figure 3.2: The dimensionless bed height and pressure drop of the fluidized bed.

3.4 Results and discussion

3.4.1 Macroscopic phenomena: observed from the simulations

Bed height and pressure drop

The bed height and pressure drop are two important parameters in the investiga-
tion of the homogeneous fluidization behavior. In this research, the bed height has
been defined in the following way: First, the fluidized bed is divided into a number
of narrow subregions along the x (i.e. width) direction. The width of each subre-
gion is limited to two times the diameter of a single particle. Then the y coordinate
(i.e. height) of the highest particle in each subregion is identified, which defines
the height of this subregion. The average height of all subregions has been taken as
the bed height.

The relative bed height H∗ and pressure drop p∗, as a function of superficial gas
velocity, are shown in Figure 3.2, where H∗ and p∗ are defined as

H∗ =
H −H0

H0
(3.8)

4p∗ =
4p

ρpg H0(1− ε0)
(3.9)

where H0 and ε0 are, respectively, the height and porosity of the initial packed bed.
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Figure 3.3: Snapshots of simulation results for Hamaker constant A = 10−22 J.

Minimum fluidization velocity and minimum bubbling velocity

From Figure 3.2, it is clear that for all three levels of van der Waals forces the min-
imum fluidization velocity is nearly identical (Umf = 0.004 m/s), which indicates
that the effect of the van der Waals forces on the minimum fluidization point is
small. This value, however, is over-predicted compared to the value calculated
from the approximate relation of Wen and Yu ( = 0.003 m/s) [29] with a porosity
εmf =0.37.

It seems quite difficult to determine the minimum bubbling points solely from
the data plotted in Figure 3.2. It has been found by previous researchers that there
could be a decrease of the bed height near the minimum bubbling point [31]. The
mechanism underlying this collapse is not well known. However, no such collapse
has been observed in our simulations. This may be due to the relatively large par-
ticle size (dp=100 µm) used in our simulations. In a recent paper of Menon and
Durian [32], a collapse for particles with a diameter of 49 µm was observed, but not
for particles with a diameter of 96 µm.

The minimum bubbling points, on the other hand, can be determined from
the observation of the macroscopic motion of particles. Snapshots from the three
simulations are shown in Figures 3.3 to 3.5. From Figure 3.3 it is obvious that the
minimum bubbling velocity Umb is about 0.028 m/s when the Hamaker constant
A = 10−22 J. In the case of A = 10−21 J the first obvious bubble (see Figure 3.4)
appears at Umb = 0.030 m/s, which is somewhat higher than that for A = 10−22 J. If
the Hamaker constant becomes larger (i.e. A = 10−20 J), however, no obvious bub-
ble appears even for a superficial gas velocity U0 as high as 0.052 m/s (see Figure
3.5). Instead a chainlike network can be found. A closer examination of the sim-
ulation results revealed that channels existed near the two sidewalls at U0 = 0.04
m/s. It seems that the gas flows bypasses the bed by forming channels, which is a
well-known behavior of Geldart C particles [1].
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Figure 3.4: Snapshots of simulation results for Hamaker constant A = 10−21 J.
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Figure 3.5: Snapshots of simulation results for Hamaker constant A = 10−20 J.
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Figure 3.6: The homogeneous expansion of Geldart A particles in a gas-fluidized bed. The
Hamaker constant A = 10−22 J.

For the particles studied in this research, the minimum bubbling velocity es-
timated from the empirical correlations [29] is around 0.01 m/s, which is lower
than the simulation results. In a DPM simulation for the similar type of particles
Xu et al. [30] also obtained a value of Umb = 0.028 m/s, which is very close to a
specified experimental work by Donsi and Massimilla [33]. It is worthy mentioning
that, although Xu et al. employed a larger A (2.1 × 10−21 J) for the homogeneous
fluidization, the granular Bond number Bo (the ratio of the interparticle van der
Waals force to the single particle weight) is in the same range compared to what we
used [34].

Homogeneous expansion

In the case of relatively weak interparticle van der Waals forces (A = 10−22 and
10−21 J), the homogeneous expansion of the bed can be observed, as shown in
Figures 3.6 and 3.7. It has been found by previous researchers that for Geldart A
particles the gross circulation of particles would prevail in the absence of obvious
bubbles [1]. In Figure 3.8(a) and (b) we show the typical velocity fields of parti-
cles, corresponding to the central snapshots of Figures 3.6 and 3.7 respectively. It
can be seen from Figure 3.8 that the particles near the bottom move upward from
the middle zone while particles near the top of the bed move downward along two
sidewalls. Such a circulation of particles eventually causes the system to become
well mixed. Obviously the gas fed through the distributor and the friction between
the particles and sidewalls are the main causes of such a macroscopic circulation.
Besides this gross circulation, local small circulations can also be observed.
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Figure 3.7: The homogeneous expansion of Geldart A particles in a gas-fluidized bed. The
Hamaker constant A = 10−21 J.

(a) (b)

Figure 3.8: The profile of particle velocity vector during the homogeneous expansion. (a)
A=10−22 J. The snapshot shown in the center graph of Figure 3.6. (b) A = 10−21 J. The snap-
shot shown in the center graph of Figure 3.7.
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granular physics, it is well-known that the kinetic energy dissipation between particle-particle 
contacts (collisions) will lead to the formation of clusters, and hence void structures such as 
cavities. This dissipation can be caused by two types of interactions: the inelastic collision 
between particles, which is controlled by the restitution coefficient, and friction, which can be 
taken into account via the friction coefficient.  
 
From the viewpoint of energy balance, the homogeneous fluidization regime can be considered 
as a quasi-equilibrium state. Due to the lack of bubbles that carry out the excess gas, the 
energy balance can be written as 
 

i o d pE E E E= + +                                                        (6) 

 
where iE  is the kinetic energy provided by the inlet gas flow, oE  the kinetic energy carried out 

by the outlet gas flow, dE  the energy dissipated from particle-particle contacts, and pE  the 

potential energy necessary for maintaining the bed height. Interestingly, it is found from the 
simulation results that the average bed height will not change by modifying the contact 
parameters, as long as the inlet gas velocity is kept constant. Therefore the energy balance will 
be greatly affected by the dissipation of kinetic energy of particles due to particle-particle 
collisions. The presence of friction, on the other hand, may enhance the energy dissipation 
caused by particle-particle collisions. The wave-like surface of the bed in the absence of friction 
may relate to the energy distribution. We argue that in the absence of friction, the restitution 
coefficients in our simulations are not sufficient to keep the energy balance between iE  and 

dE , and the gas motion may manifest in other complex forms. This suggests that the contact 

parameters, especially the frictional coefficients, will influence the energy distribution and hence 
hydrodynamics of the fluidized bed. 
 

Figure 1: Snapshots obtained from simulations with different contact parameters. 6000 particles with 
a uniform size of 60 µm and a density of 1129 kg/m3 are used. The normal and tangential spring 
stiffness are 7 N/m and 2 N/m respectively. The contact parameters in the pictures from left to right 
are: left: en=et=0.9, µf=0.3; middle: en=et=0.6, µf=0.0; right: en=et=0.9, µf=0.0. The Hamaker constant 
is A = 1.0×10-20 J. 

Figure 3.9: : Snapshots obtained from simulations with different contact parameters. The
number of particles is 6000 with a diameter of 60 µm and a density of 1129 kg/m3. The nor-
mal and tangential spring stiffness are 7 N/m and 2 N/m respectively. The contact parame-
ters in the pictures from left to right are: left: en = et = 0.9, µf = 0.3; middle: en = et = 0.6,
µf = 0.0; right: en = et = 0.9, µf = 0.0. The Hamaker constant is A = 1.0 × 10−20J .

Void structures during homogeneous fluidization

Since in the homogeneous fluidization regime particle-particle contacts (or
particle-particle collisions) occur frequently, a good understanding of their effect
on the homogeneous fluidization is essential. The particle-particle contact is typi-
cally a dissipative process in which the kinetic energy of particles will be lost. In the
soft-sphere model, two parameters will control the energy dissipation: the restitu-
tion coefficient and the friction coefficient. Simulations have been carried out for
different restitution coefficients and friction coefficients (see Figure 3.9 for some
typical snapshots). All the simulations have been performed under similar con-
ditions, except for the values of the restitution and friction coefficients. It can be
seen that in the absence of friction the cavities and channels are only found near
the bottom of the bed, and furthermore wave-like surface is observed. If a non-zero
friction coefficient is employed, we find the phenomena similar to those observed
by Massimilla et al. [28]: channels are formed near the bottom of the bed which
rise, grow and eventually disappear at the surface of the bed. Note that the surface
of the bed is more flat in the presence of friction.

It may be deduced from the simulation results that the friction coefficient is the
dominant parameters that affects the formation of channels and not the restitution
coefficients. From granular physics, it is well-known that the kinetic energy dissi-
pation between particle-particle contacts (collisions) will lead to the formation of
clusters, and hence void structures such as cavities. This dissipation can be caused
by two types of interactions: the inelastic collision between particles, which is con-
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Figure 3.10: The rise of a bubble inside the fluidized bed for a superficial gas velocity
U0=0.040 m/s. The Hamaker constant A=10−21 J.

trolled by the restitution coefficient, and friction, which can be taken into account
via the friction coefficient. From the viewpoint of energy balance, the homoge-
neous fluidization regime can be considered as a quasi-equilibrium state. Due to
the absence of bubbles that carry the excess gas, the energy balance can be written
as

Ei = Eo + Ed + Ep (3.10)

where Ei is the kinetic energy provided by the inlet gas flow, Eo the kinetic energy
carried out by the outlet gas flow, Ed the energy dissipated from particle-particle
contacts, and Ep the potential energy necessary for maintaining the bed height. In-
terestingly, it is found from the simulation results that the average bed height will
not change by modifying the contact parameters, as long as the inlet gas velocity is
kept constant. Therefore the energy balance will be greatly affected by the dissipa-
tion of kinetic energy of particles due to particle-particle collisions. The presence of
friction, on the other hand, may enhance the energy dissipation caused by particle-
particle collisions. The wave-like surface of the bed in the absence of friction may
relate to the energy distribution. We argue that in the absence of friction, the resti-
tution coefficients in our simulations are not sufficient to keep the energy balance
between Ei and Ed , and the gas motion may manifest in other complex forms.
This suggests that the contact parameters, especially the frictional coefficients, will
influence the energy distribution and hence the bed dynamics.

Fast bubbles

In Figure 3.10 the rise of a typical bubble has been visualized. The rise veloc-
ity of this bubble can be estimated from a detailed analysis of the snapshots,
and amounts 0.055 m/s, which is much higher than the interstitial velocity of gas
around this bubble (0.001 ∼ 0.02 m/s). It is therefore a fast bubble that can only be
found in the fluidization of fine particles [29]. In Figure 3.11 the velocity field of the



3.4 Results and discussion ‖ 63

t = 20.6262 s

Figure 3.11: The gas flow around a single bubble. Left: The instantaneous velocity field of
gas phase of the bed. Right: The instantaneous velocity flied of gas flow around a single
bubble. The figure corresponds to the snapshot shown in the far right graph of Figure 3.10.

gas phase around the bubble has been plotted. The circulation of gas around the
bubble is clearly demonstrated, which is believed to be one of the most important
features of a fast bubbles [29].

3.4.2 The forces structure during homogeneous fluidization

Here we will present a more detailed analysis of the magnitude of the various forces
in the homogeneous fluidization regime. From Eq.(3.1), we have the following total
force (Ft), acting on a single particle

Ft = Fconta,c + Fcont,f + Fvdw + Fdrag + Fg (3.11)

with Fcont,c the elastic force due to particle-particle contact, Fcont,f the friction
force due to particle-particle contact, Fvdw the van der Waals force, Fdrag the drag
force, and Fg the gravitational force. Simulations have been carried out both with
and without interparticle van der Waals forces. In a recent paper [30] it was shown
that in the homogeneous fluidization regime the contact forces acting on the par-
ticle are balanced by the interparticle van der Waals forces. In Figure 3.12 we show
the forces acting on each particle. In the presence of van der Waals forces it can be
seen that the sum of normal contact force and interparticle van der Waals force is
not strictly zero for most particles, but rather fluctuates around zero. If we turn
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The forces structure during homogeneous fluidization 
 
The effects of the interparticle van der Waals forces on the flow patterns inside fluidized beds 
have been reported in a previous paper (8). It was shown that in the case of strong van der 
Waals forces Geldart A particles manifest a Geldart C type behavior. In case of relatively weak 
interparticle van der Waals forces, we observed a fluidization behavior with some of the typical 
features found in fluidization experiments with Geldart A particles; for example, we observed the 
homogenous expansion, the gross circulation in the absence of bubbles and the presence of fast 
bubbles.  
 
Here we will present a more detailed analysis of the magnitude of the various forces in the 
homogeneous fluidization regime. From Eq.3, we have the following total force ( tF ), acting on a 
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Figure 2: Forces acting on the particles during the homogeneous fluidization regime for different 
values of the Hamaker constant A. It is taken from one typical instant of the simulation, which is 
carried out with 3214 particles with a uniform size of 100 µm and a density of 900 kg/m3. The normal 
and tangential spring stiffness are 7 N/m and 2 N/m, respectively. The contact parameters are: 
en=et=0.9, µf=0.2. (a) Drag force and gravitational force for A = 0; (b) Normal contact force for A = 0; 
(c) Drag force and gravitational force for A = 1.0×10-20J; (d) The sum of van der Waals force and 
normal contact force for A = 1.0×10-20  J. 
 

Figure 3.12: : Instantaneous forces acting on the particles during homogeneous fluidization,
taken at some random moment for different values of the Hamaker constant A. The number
of particles is 3214 with a diameter of 100 µm and a density of 900 kg/m3. The normal and
tangential spring stiffness are 7 N/m and 2 N/m, respectively. The contact parameters are:
en = et = 0.9, µf = 0.2. (a) Drag force and gravitational force for A = 0; (b) Normal contact
force for A = 0; (c) Drag force and gravitational force for A = 1.0 × 10−20J; (d) The sum of
van der Waals force and normal contact force for A = 1.0 × 10−20J .
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Figure 3.13: The time-averaged velocity fluctuation of particles in both the x and y direction.

off the interparticle van der Waals force the normal contact force becomes ex-
tremely small (for most of particles it vanishes). Meanwhile, in both situations the
x-components of the drag forces acting on the particles also fluctuate around zero
while the y-components fluctuate around−Fg. The frictional forces between parti-
cles, however, are not balanced by any kinds of force. Since the frictional forces are
essentially working along the tangential direction, they may contribute much more
to the rotational motion rather than the translational motion. Clearly, an exact bal-
ance of the forces seems to exist only at the macroscopic-level, but not at the level
of individual particles, which confirms that the homogeneous fluidization regime
is actually a quasi-equilibrium state. The drag forces and van der Waals forces are
two important sources of the local force fluctuations, which consequently form the
sources of velocity fluctuation of particles.

3.4.3 Analysis of the velocity fluctuation

An important property of the system with regard to the understanding of the
fluidization behavior is the granular temperature, which is defined as the mean
squared velocity fluctuation of particles. Since the velocity fluctuation is not always
isotropic [37], it is essential to separately consider the mean square fluctuation of
the x (defined perpendicular to the sidewalls) and y (parallel to the sidewalls) com-
ponent of particle velocities. The velocity fluctuation is given by

Tx = 〈v2
x − 〈vx〉2〉, Ty = 〈v2

y − 〈vy〉2〉 (3.12)

where vx and vy are x and y component of the instantaneous particle velocity re-
spectively. The brackets, 〈·〉, denote an ensemble average. The granular tempera-
ture in the 2D fluidized beds is defined as

T = (2Tx + Ty)/3 (3.13)
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Figure 3.14: The ratio of the time-averaged velocity fluctuation of particles between the x
and y direction.

in accordance with Koch and Sangani [37].
In this research, the following method has been used to determine Tx and Ty

from the simulation data: Firstly, for each cell (CFD grid) the local velocity fluctua-
tion of particles is calculated by use of Eq.(3.12); From this, the total velocity fluc-
tuation of the particles inside the bed is calculated as the volume fraction weighted
time-average [38]

Tk,av = 1
4t

∫ t+4t

t
(
∑

Tkεi/
∑

εi)dt (k = x, y) (3.14)

Weak interparticle van der Waals force

In Figure 3.13, we show the velocity fluctuation of particles inside the bed. If the
interparticle van der Waals forces are relatively weak, i.e. A = 10−22 and 10−21 J, we
note that there exist three distinct regimes: (1) Regime I (U0 = 0.00 ∼ 0.004 m/s),
where the particle velocity fluctuation is nearly isotropic, i.e. Tx/Ty ' 1 as shown
in Figure 3.14. Moreover, the variations of both Tx and Ty are negligible and the
velocity fluctuation can be approximately considered as a constant T = 3.5× 10−8

m2/s2. (2) Regime II (U0 = 0.006 ∼ 0.03 m/s), in which the velocity fluctuation of
particles increases as the superficial gas velocity increases. However, a rather large
anisotropy with respect to the x and y direction is found. As shown in Figure 3.14,
for both levels of van der Waals forces the ratio Tx/Ty decreases from 0.6 ∼ 0.7 to
0.3 ∼ 0.4 and then increases to about 0.5, with a minimum value 0.3 at about U0=
0.022 m/s. However, the velocity fluctuation in both x and y direction are obviously
different for A = 10−22 and 10−21 J, which implies that the van der Waals force
could affect the velocity fluctuation in this regime. (3) Regime III (U0 ≥ 0.03 m/s).
In this regime, the velocity fluctuation still increases with superficial gas velocity
U0, however the ratio Tx/Ty in this regime is nearly constant, i.e. Tx/Ty ' 0.5.
Moreover, the velocity fluctuation in both directions are nearly equal for A = 10−22
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and A = 10−21 J. This can be understood from the fact the van der Waals force is
a short range interaction: the porosity is higher in this regime, and as a result the
mean interparticle distance increases and the effect of van der Waals force becomes
extremely weak.

It should be mentioned that the occurrence of three regimes as observed from
the variation of the velocity fluctuation, i.e. Figures 3.13 and 3.14, agrees well with
the analysis based on the macroscopic motion of particles. In principle, there are
three kinds of basic interactions in fluidized beds that can cause velocity fluctu-
ations of the particles. The first one is the fluid-particle interaction, which is be-
lieved to be the dominant factor causing a strong fluctuation of particle velocity
in y direction. The other two are the particle-particle collisions (and particle-wall
collisions) and the interparticle van der Waals forces. These two kinds of inter-
actions, which have no directional preference, should contribute equally to the
fluctuation of particle velocity in both x and y direction. Regime I is actually the
fixed bed regime. In this regime, the superficial gas velocity is relatively low and
the fluid-particle interaction is not important compared to the particle-particle in-
teractions (including the particle-particle collisions and the interparticle van der
waals forces). As a result, the bed of particles act like a solid, with no obvious
anisotropy of the velocity fluctuation. Regime II corresponds to the homogeneous
fluidization regime. In this regime the fluid-particle interaction starts to play an
important role, however the particle-particle interaction is still relatively strong.
Therefore, this represents a transient phase where all three kinds of interactions,
i.e. the fluid-particle interaction, the particle-particle collisions (and particle-wall
collisions), and the interparticle van der Waals forces, are the prime sources of
the velocity fluctuation of the particles in this regime. Regime III is the bubbling
regime. In this regime, the fluid-particle interaction becomes dominant over the
particle-particle collisions while the effect of the interparticle van der Waals forces
is significantly reduced. On the other hand, the constant ratio Tx/Ty = 0.5 probably
indicates there exists a dynamic equilibrium between the fluid-particle interaction
and the particle-particle collisions (and particle-wall collisions) as far as the con-
tribution to the velocity fluctuation of particles is concerned.

Strong interparticle van der Waals force

When the interparticle van der Waals force is strong (A = 10−20 J), quite differ-
ent fluidization behavior is observed. As shown in Figure 3.5, we find a chainlike
network which dominates the fluidization behavior. The bed of particles behave
like a solid during a relatively long interval of U0 = 0.0 ∼ 0.044m/s. Obviously the
interparticle van der Waals forces are the dominate sources of the velocity fluctua-
tion of particles. In this case, as shown in Figures 3.13 and 3.14, the ratio Tx/Ty is
nearly 1.0, which reflects the isotropy of the velocity fluctuation of particles. But if
the superficial gas velocity becomes sufficient high (U0 ≥ 0.04 m/s), a fluid-like be-
havior can also be found. As mentioned above, however, no obvious bubble arises.
Also no breakdown of the chainlike network has been observed. This means that in
the case of the strong interparticle van der waals forces the Geldart A particles can
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Figure 3.15: : The dependence of the velocity fluctuation of particles on the square super-
ficial gas velocity. Simulations are carried out under the same conditions as indicated in
Figure 3.12 except that the contact parameters are: en = et = 0.9, µf = 0.2 and the Hamaker
constant A = 1.0 × 10−20J .

display the fluidization behavior of Geldart C particles.

Effect on the gas flows

Direct measurement of the velocity fluctuation of particles (i.e. granular temper-
ature) in a gas-fluidized bed has proved difficult, and only very recently some ex-
perimental results have become available. Cody et al. (1) measured the granular
temperature in a gas-fluidized bed by use of a Acoustic Shot Noise (ASN) method.
Menon and Durian [32] measured the sand motion in a gas-fluidized bed with a dif-
fusing wave spectroscopy (DWS). In a recent experiment [36] the fluctuation veloc-
ity was estimated from the measured diffusion coefficient Df by use of the kinetic
theory. The velocity fluctuation of particles, with respect to the squared superfi-
cial gas velocity, obtained in our 2D simulations is plotted in Figure 3.15, It shows
that the velocity fluctuation of particles is essentially zero before the bed begins
to bubble, in agreement with the observation of Cody et al. [35] and Menon and
Durian [32]. Menon and Durian [32] concluded that the homogeneous fluidization
is a completely static state. Actually the velocity fluctuation of particles in the ho-
mogeneous fluidization regime is quite low (only 1% of that in bubbling regime), as
shown in Figure 3.15, which is quite difficult to be measured by using a single mea-
suring system due to the limited range of resolution. In this respect, the discrete
particle simulations are ideally suited for obtaining this type of information.

Cody et al. [35] found that beyond the minimum bubbling point the average
velocity fluctuation of particles is a linear function of the squared superficial gas
velocity. It can be seen that in bubbling regime our simulation results agree very
well with the findings by Cody et al. [35]. In the homogeneous fluidization regime,
however, we do not observe such a linear dependence, instead, we find an expo-
nential dependence. It is noteworthy that in the experiments by Valverde et al. [36]
an exponential dependence of the fluctuation velocity on gas velocity was found
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up to a maximum value corresponding to the maximum bed expansion point. In
fact the interval of homogeneous fluidization in the experiments of Cody et al. [35]
is quite short (umb/umf < 2.0, where both umb and umf have their usual meaning)
and the exponential dependence of velocity fluctuation may be screened by the
relatively long interval of the bubbling regime. By contrast, Valverde et al. [36] ob-
tained a long interval of homogeneous fluidization (umb/umf ∼ 40) by adding flow
conditioners to particles with average diameter of 8.53 mm, where the cohesion of
particles has been greatly reduced and a Geldart A type fluidization behavior is ob-
served. So far the constant ratio of Tx/Ty in the bubbling regime, as found above,
is actually due to the linear dependence of the velocity fluctuation of particles on
the square superficial gas velocity.

The mechanism behind the transition from an exponential dependence to a
linear dependence may be explained from the viewpoint of energy balance. The
linear dependence may indicate that the fluctuation energy in the bubbling regime
mainly comes from the energy provided by the inlet gas, while an exponential de-
pendence hints at a more complicated picture. This will be the subject of further
study.

The role of interparticle van der Waals forces

From the above analysis, it seems that the instability of the homogenous fluidiza-
tion of Geldart A particles is mainly induced by the strong fluid-particle interaction,
which leads to a much stronger velocity fluctuation of particles in the y (vertical)
direction than that in the x (horizontal) direction. The presence of the particle-
particle collisions and the interparticle van der Waals forces can prevent, or reduce,
such an instability since they contribute equally to the velocity fluctuation in both
x and y direction. This can be evidenced by the presence of Geldart C fluidiza-
tion behavior of Geldart A particles when the interparticle van der Waals forces are
strong, as discussed above. As the interparticle van der Waals forces are always
present for the true Geldart A particles, it is essential to consider their effect on the
homogenous fluidization behavior.

3.4.4 Particulate pressure: comparison with other work

Like in a dense molecular gas, the particulate pressure can be defined as

pp = ρp(1− ε)T. (3.15)

On the other hand, Koch and Sangani [37] proposed a different expression for
the particulate pressure by assuming that the velocity fluctuation of particles is
anisotropic:

pp = [(φ + 8B/5)Ty + (12/5)BT ]ρpUt, (3.16)

where B is a function of the particle concentration φ = 1 − ε [37]. Eq.(3.16) is
slightly different from Eq.(3.15) in ref.( [37]) since the latter one is normalized by
ρpUt where Ut is the particle terminal velocity.
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Figure 3.16: The time-averaged particle pressure of the fluidized bed. The unit of the partic-
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In Figure 3.16 results for pp based on both Eq.(3.16) (plus symbols) and Eq.(3.15)
(line). Clearly the difference between these two sets of results is more pronounced
in the dense regime (i.e. homogeneous fluidization regime) than in the dilute
regime (bubbling regime). Since Koch and Sangani [37] did not consider the effect
of the interparticle van der Waals forces, this is not surprising because in homoge-
neous fluidization regime (the dense regime) the interparticle van der Waals forces
have a direct impact on the velocity fluctuation of particles.

The local particle pressure inside the bed can be obtained by using Eq.(3.15).
Figure 3.17 shows the distribution of particle pressure inside a bubbling fluidized
bed, corresponding to the snapshot shown in the far right picture of Figure 3.10.
From Figure 3.17, we found that the particle pressure is larger in the bottom and at
sides of a bubble. Above the bubble the particle pressure is relatively small. This is
in agreement with the recent experimental results by Rahman and Campbell [39].

3.5 Conclusions

In this paper we reported on the simulation results of the fluidization behavior of
Geldart A particles by using a 2D soft-sphere based discrete particle model. Some
typical features of fluidization behavior of Geldart A particles have been observed.
If the interparticle van der Waals forces are not too strong, an interval of homoge-
neous fluidization can be displayed between the minimum fluidization point and
the minimum bubbling point, where the gross circulation of particles in the ab-
sence of bubbles is found. The formation of cavities and channels is related to the
contact parameters, especially the friction coefficient. In the bubbling regime a
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Figure 3.17: The instantaneous particle pressure distribution of the bubbling fluidized bed.
The snapshots shown in the far right graph of Figure 3.10. The unit of the particulate pres-
sure is kg/m·s2.

detailed check suggests that the bubbles are typically fast bubbles, and the circu-
lation of gas flow around the bubble is also clearly demonstrated. The structure of
the forces acting on the particles is also studied, and the homogeneous fluidization
regime is shown to be a quasi-equilibrium state where a force balance only exists
at the macroscopic-level but not at the level of individual particles. The drag forces
and van der Waals forces are two important sources of the local force fluctuations,
and thus of the velocity fluctuation of the particles. It proves that, by use of a dis-
crete particle model, the important features of homogeneous fluidization can be
qualitatively described.

An analysis of the velocity fluctuation of particles has been carried out. It is
shown that an anisotropy of the velocity fluctuation of particles exists in both the
homogeneous fluidization regime and the bubbling regime. At least three basic
interactions, i.e. the fluid-particle interaction, the particle-particle collisions (and
the particle-wall collisions), and the interparticle van der Waals forces, can be iden-
tified as the main sources of velocity fluctuations of particles. The homogeneous
fluidization is actually a transition phase resulting from the competition of these
three interactions. In the bubbling regime, however, the effect of the interparticle
van der Waals forces vanishes and the fluid-particle interaction becomes the dom-
inant factor determining the fluidization behavior of Geldart A particles. Further
analysis suggests that the ratio of the velocity fluctuation of particles in the x and y
direction is nearly constant, which indicates that a dynamic equilibrium of the con-
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tribution to the fluctuation energy of particles may exist between the fluid-particle
interaction and the particle-particle collisions (and particle-wall collisions) in the
bubbling regime. Additionally, we find that the velocity fluctuation of the particles
is an exponential function of the squared superficial gas velocity in the homoge-
neous fluidization regime, and not a linear function as found by Cody et al. [35].

The comparison of the particulate pressure obtained from our simulations with
the theoretical prediction by Koch and Sangani [37] suggests that the difference
is more pronounced in the homogeneous fluidization regime than that in the bub-
bling regime. This further indicates that the fluid-particle interaction is a dominant
factor responsible for the bubbling regime but not for the homogeneous fluidiza-
tion. Our results in bubbling regime are also found to be in a good agreement with
the experimental results by Rahman and Campbell [39].

We stress, however, that the current results are for 2D only, and can therefore
only serve to get a qualitative insight into the physical principles underlying the
fluidization behavior of Geldart A particles. For a true, quantitative comparison
with experiments, clearly full 3D simulations are required, on which we report in
the next chapter.
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4
Effects of Gas and Particle Properties on the

Fluidization of Geldart A Particles

ABSTRACT

In this chapter we report on 3D computer simulations based on the soft-sphere dis-
crete particle model (DPM) of Geldart A particles in a 3D gas-fluidized bed. The
effects of particle and gas properties on the fluidization behavior of Geldart A parti-
cles are studied, with focus on the predictions of Umf and Umb, which are compared
with the classical empirical correlations by Abrahamsen and Geldart [2]. It is found
that the predicted minimum fluidization velocities are consistent with the correla-
tion given by [2] for all cases that we studied. The overshoot of the pressure drop near
the minimum fluidization point is shown to be influenced by both particle-wall fric-
tion and the interparticle van der Waals forces. A qualitative agreement has been
found between the predicted Umb with the correlation for different particle-wall fric-
tion coefficients, interparticle van der Waals forces, particle densities, particle sizes,
and gas densities. For fine particles with a diameter dp < 40µm, a deviation has been
found between the predicted Umb and the correlation. This may be due to the fact that
the interparticle van der Waals forces are switched off in the simulations while they
can play an important role in this size range. The simulation results with different
gas viscosities, however, manifest a systematic deviation from the correlation. We
found that with an increasing gas shear viscosity the Umb experiences a minimum
point near 2.0× 10−5Pa · s, while in the correlation the minimum bubbling velocity
decreases monotonously for increasing µg.
Based on: M. Ye, M. A. van der Hoef, and J.A. M. Kuipers, 2004. Effects of gas and particle properties on

the fluidization of Geldart A particles in a gas-fluidzed bed, accepted by Chem. Engng. Sci.
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4.1 Introduction

The great relevance of fluidization of Geldart A particles [1] for industrial appli-
cations has long been recognized in chemical reaction engineering, in particular
in the context of fluidized bed reactors of fluid catalytic cracking (FCC) powders.
A typical property of Geldart A particles is that they display an interval of non-
bubbling expansion (homogeneous fluidization) between the minimum fluidiza-
tion velocity Umf and the minimum bubbling velocity Umb, which is absent in the
fluidization of large particles (Geldart B and D particles). It is precisely this ho-
mogeneous fluidization which is of practical importance for both heat and mass
transfer in the reactors. Over the past years these systems have been the subject
of intense research, in order to shed light on the origin of the homogeneous flu-
idization. Unfortunately, to date no comprehensive theoretical approach has been
found which is capable of describing homogeneous fluidization and bubbling be-
havior on the basis of gas and particle properties. Foscolo and Gibilaro [3] sug-
gested that the fluid-particle interaction is the dominant factor that controls the
stability of the homogeneous fluidization regime. On the other hand, Rietema and
his co-workers [4,5] proposed that the interparticle forces should be responsible for
the homogeneous fluidization behavior of small particles. It has since then been a
matter of intense debate between researchers. Experimental results by Tsinontides
and Jackson [6] and Menon and Durian [7] suggest the state of homogeneous flu-
idization is actually solid-like where the enduring contacts make particles stay at
rest, which supports the role of interparticle forces in the formation of homoge-
neous fluidization. However, Cody et al. [8] showed a pronounced increase of the
particle velocity fluctuation during the transition from Geldart B to Geldart A flu-
idization behavior in their experiments, which means the bed of particles displays
a fluidlike behavior. In a recent experiment Valverde et al. [9] fluidized very small
particles (dp ∼ 8.53µm) with flow conditioners in a gas-fluidized bed, and observed
a relatively long interval of homogeneous fluidization. They found that even during
the homogeneous fluidization, both the solidlike and fluidlike behavior can be dis-
tinguished. This finding bridges the gap between the experimental results by Tsi-
nontides and Jackson [6] and Menon and Durian [7] and Cody et al. [8]. However,
as Valverde et al. [9] used Geldart C particles, it is not clear whether the solidlike or
the fluidlike behavior is dominant for true Geldart A particles in gas-fluidized beds.
Koch and Sangani [10] derived a very detailed kinetic theory by taking into account
the fluid-particle interaction and particle-particle collisions. From detailed linear
stability analysis of their equations, Koch and Sangani [10] showed that homoge-
neous fluidization is not stable, unless other non-hydrodynamical mechanisms
such as interparticle forces are considered. Buyevich and his co-workers [11, 12]
developed a similar kinetic theory based on the concept of induced random fluc-
tuation of particles. Based on this theory, very recently Sergeev et al. [13] found
that the apparent stability of uniform fluidization can also be explained without
taking into account interparticle forces. So far, however, the physics behind the
homogeneous fluidization is not completely understood. As the direct experimen-
tal evidence supporting either of these viewpoints is still not available, a detailed



4.2 Discrete particle model ‖ 77

study of the particle-particle interactions and particle-fluid interaction at a more
fundamental level is highly desirable.

Computer simulations can play a valuable role in such studies. Discrete par-
ticle models (DPM) have been widely used in the study of gas-fluidized beds, for
example, the hard-sphere approach by Hoomans et al. [14] and Li and Kuipers [15],
and soft-sphere approach by Tsuji et al. [16], Xu and Yu [17], Mikami et al. [18], and
Kafui and Thorton [19]. The idea of discrete particle simulation is to trace the mo-
tion of each particle in the system by solving the Newtonian equations of motion.
In DPM the details of the particle-particle (and particle-wall) collisions, including
friction, can be readily incorporated. Furthermore, through the two-way coupling
DPM allows studying the influence of particle properties on the gas flow or vice
versa [15]. The details of this simulation method are given in Chapter 2.

Recently several attempts have been made [20, 21, 30] to study the fluidiza-
tion behavior of Geldart A particles by use of 2D discrete particle simulations.
Kobayashi et al. [20] studied the effect of both the lubrication forces and the van
der Waals forces on the fluidization of Geldart A particles. Xu et al. [21] investigated
the force structure in the homogeneous fluidization regime, where they found that
the van der Waals forces acting on the particles are balanced by the contact forces.
In the previous chapter, we observed many of the typical features of gas-fluidized
Geldart A particles, such as the homogeneous expansion, gross particle circulation
in the absence of bubbles, and fast bubbles emanating at fluidization velocities
beyond Umb [30]. It was found that homogeneous fluidization actually represents a
transition phase resulting from the competition of three kinds of basic interactions:
the fluid-particle interaction, the particle-particle collisions (and particle-wall col-
lisions) and the interparticle van der Waals forces [30]. In this work, we will study
the influence of the properties of both the particulate phase and gas phase on the
fluidization behavior of Geldart A particles with a full 3D discrete particle model,
with focus on the prediction of Umf and Umb and comparisons with the classical
empirical correlations by [2]. In section 2 the discrete particle model is briefly de-
scribed. Subsequently the details of the simulation procedure are discussed in sec-
tion 3, which is followed by a presentation of the simulation results. The chapter
ends with a discussion and conclusions.

4.2 Discrete particle model

In the discrete particle model, the gas-phase hydrodynamics is derived from the
volume-averaged Navier-stokes equations, following the approach of [22], which is
reported in more detail in Chapter 2.

∂(ερg)
∂t

+ (∇ · ερgu) = 0 (4.1)

∂(ερgu)
∂t

+ (∇ · ερguu) = −ε∇p− Sp −∇ · (ετ) + ερgg (4.2)
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where the coupling with the particulate phase is included by means of a source
term Sp, defined as

Sp =
1
V

∫ Npart∑
a=0

Fdrag,aδ(r− ra)dV. (4.3)

In solving the gas-phase hydrodynamical equations, there are two types of
boundary conditions that can in principle be used to account for the sidewalls:
no-slip and free-slip boundary conditions. For the free-slip boundary conditions,
the normal components of the gas velocity near the sidewalls are zero and the nor-
mal gradient of the tangential components vanishes. In the case of no-slip bound-
ary conditions, both the normal and tangential components of gas velocity at the
sidewalls vanish [22]. The no-slip boundary conditions have been widely used in
the simulation of fluidized beds and are considered to be more physically accu-
rate. In this research, we use either no-slip or free-slip boundary conditions for
the sidewalls. As we will see in the following sections, in our particular case, the
free-slip wall boundary conditions produces smaller minimum bubbling velocities
than the no-slip boundary conditions, which are more close to the values calcu-
lated from the empirical correlations [2]. The minimum fluidization points, on the
other hand, are not affected by the wall boundary conditions.

The particulate phase is described by solving the Newtonian equations of mo-
tion for each individual particle in the system. The equation of motion of a single
particle a is given by

ma
d2ra

dt2
= Fc,a + Fvdw,a + Fdrag,a − Va∇p + mag (4.4)

Ia
dωa

dt
= Ta (4.5)

The first and second term on the RHS of Eq.(4.4) are, respectively, the total contact
force and the van der Waals force exerted by neighboring particles.

The contact force between two particles (or a particle and a wall) is obtained
from a soft-sphere model originally proposed in [23]. In that model, a linear-spring
and a dashpot are used to formulate the normal contact force, while a linear-spring,
a dashpot and a slider are used to compute the tangential contact force. The details
of this model can be found in Chapter 2.

The interaction of particle a with surrounding fluid follows from a drag force
Fdrag,a, which depends on the relative velocity of the two phases, and can be writ-
ten as

Fdrag,a = 3πµgε
2dp(u− vp)f(ε) (4.6)

In Eq.(6.4), the effect of the neighboring particles on the drag force experienced
by particle a is included via the so-called porosity function f(ε), which depends
on the local porosity ε. In this research, the well-known Ergun equation [24] is
employed for porosities lower than 0.8 and the Wen and Yu correlation [25] for
porosities higher than 0.8. In terms of the porosity function, the Ergun-Wen-Yu
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drag model can be written as

f(ε) =
150(1− ε)

18ε3
+

1.75Rep

18ε3
ε < 0.8 (4.7)

f(ε) = (1 + 0.15Re0.687
p )ε−4.65 ε ≥ 0.8 (4.8)

This drag model used in many other studies is used in the present study as well.
To calculate the interparticle van der Waals force between two spheres, we

adopt the Hamaker expression [26, 27]:

Fvdw,ab(S) =
A

3
· 2rarb(S + ra + rb)
[S(S + 2ra + 2rb)]

2

[
S(S + 2ra + 2rb)

(S + ra + rb)
2 − (ra − rb)2

− 1

]2

(4.9)

Note that Eq.(4.9) exhibits an apparent numerical singularity if the intersurface dis-
tance S between two particles approaches zero. In the present model, we define a
cut-off (maximal) value of the van der Waals force between two spheres to avoid
such a numerical singularity when two particles approach very close or/and start
to compress. In practice, an equivalent cut-off value S0 for the intersurface dis-
tance is used instead of the interparticle force [28].

4.3 Simulation procedures

4.3.1 Fluidizing the system

In the simulations, the superficial gas velocity U0 is set to increase linearly with
time

U0 = Kt. (4.10)

Here the slope K is chosen sufficiently low, such that sudden changes of the flu-
idization conditions are avoided. This procedure was found to be more efficient,
compared to the ”step-wise” procedures adopted by [29] and [30]. In the step-wise
procedure, the gas velocity is increased step by step, and for each gas velocity a
sufficiently long computing time is required to ensure that the bed reaches a fi-
nal dynamical equilibrium, since a sudden change of the gas flow will lead to large
fluctuations in the flow conditions. We stress, however, that this linearly-increasing
approach differs from the common experimental procedure, and could cause some
systematic errors when compared to the experimental correlations. Nevertheless,
the linear-increasing procedure is expected to be useful for investigating the origin
of bubbling fluidization.

The optimum value of K is determined by preliminary simulations using dif-
ferent slopes. From the simulations, it has been found that the larger the slope
K, the higher the predicted minimum bubbling point Umb under the same con-
ditions. A smaller K predicts a Umb more close to that obtained in the step-wise
procedure, which, however, requires a much longer computing time. An optimum
value K = 0.03 m/s2 is determined from the fact that the computing time is not
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Table 4.1: Parameters used in the simulations.
parameters value
Particle number, 36000
Normal restitution coefficient, en 0.9
Tangential restitution coefficient, et 0.9
Friction coefficient between particles, µf 0.2
Normal spring stiffness, kn 7 or 3.5 N/m
Tangential spring stiffness, kt 2 or 1 N/m
CFD time step, 1.0×10−5 or 2.0×10−5 s
Particle dynamics time step, 1.0×10−6 or 2.0×10−6 s
Minimum interparticle distance, S0 0.4 nm
Number of cells 48×12×5
Gas temperature, T 293 K
Gas constant, R 8.314 J/(mol·K)

significantly longer, while the relation between pressure drop (and bed height as
well) and gas velocity shows relatively small deviation from that obtained via the
step-wise procedure. In this paper, if not specified otherwise, the slope K is set to
0.03 m/s2.

Some input parameters that have been used in the simulations are listed in Ta-
ble 4.1. Other parameters not indicated here will be specified in the individual sim-
ulations.

4.3.2 The determination of minimum bubbling point

One of the most important quantities which characterize the fluidization behavior
of Geldart A particles is the minimum bubbling point Umb, which is generally de-
fined as the instant at which the first obvious bubble appears [1]. However, such
a definition is difficult to utilize in a quantitative way. It has been found that the
change of the spatial fluctuation of local porosities is the most outstanding obser-
vation [20,30], although a temporal fluctuation of pressure drop and granular tem-
perature can also be observed near the transition from homogeneous fluidization
to bubbling fluidization. The typical fluctuation of local porosities with respect to
the gas velocity is shown in Figure 4.1. Here the fluctuation of local porosities is
calculated from

4ε =

√√√√ 1
Nsub − 1

[
Nsub∑
k=1

ε2
k −

1
Nsub

(
Nsub∑
k=1

εk

Nsub∑
k=1

εk

)]
(4.11)

with εk is the local porosity in the subdomain k. As can be seen from Figure 4.1,
there are two clear transitions occurring for the fluctuation of local porosities with
an increasing gas velocity. A detailed analysis shows that these two transition
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Figure 4.1: The spatial fluctuation of local porosities. The simulation is carried out with
free-slip boundary conditions for the sidewalls. Other parameters not listed in Table 4.1 are:
particle diameter dp = 75µm; Hamaker constant A = 0.0; particle density ρp = 1495 kg/m3;
gas shear viscosity µg = 1.8×10−5Pa ·s; gas molar mass Mg = 2.88×10−2 kg/mole; size of the
fluidized bed 12.0×3.0×1.2 mm; initial bed height H0 = 3.68 mm; and particle-wall friction
coefficient µf = 0.2.

points are very close to the minimum fluidization point (0.0034 mm/s) and min-
imum bubbling point (0.0082 mm/s) determined from the visualization of simula-
tion results. The window of homogeneous expansion in the discrete particle simu-
lations can thus be determined by the transition points of porosity fluctuation. In
this research, however, the minimum bubbling point is determined by the visual-
ization check.

The Umb calculated from the correlation derived by [2] is used for the compari-
son, which is given by

Umb =
2.07 dpρ

0.06
g

µ0.347
g

exp(0.176 W45) (4.12)

where W45 is the weight fraction of particles having a diameter less than 45 µm.

4.3.3 The determination of minimum fluidization point

The determination of the minimum fluidization velocity Umf is straightforward.
The pressure drop ∆ p0 across the bed will just support the weight of particles at
the minimum fluidization point, so that the following relation should hold:

∆ p0

H0
= ε0ρgg + (1− ε0)ρpg. (4.13)

Therefore in the simulation the minimum fluidization point is determined as the
first instant at which the pressure drop across the bed equals ∆ p0. The theoretical
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Figure 4.2: The effect of particle-wall friction on Umf and Umb. Shown are the simulation
results for Umb (circles) and Umf (triangles), as well as the theoretical predictions for Umb

from Eq.(4.12) (dashed line) and Umf from Eq.(4.14) (solid line). The simulations are carried
out with no-slip boundary conditions for the sidewalls. Other parameters not listed in Table
4.1 are: particle diameter dp = 75µm; Hamaker constant A = 1.0 × 10−22 J; particle density
ρp = 1495 kg/m3; gas shear viscosity µg = 1.8×10−5Pa · s; gas molar mass Mg = 2.88×10−2

kg/mole; size of the fluidized bed 12.0×3.0×1.2 mm; and initial bed height H0 = 3.68 mm.

minimum fluidization point Umf is given by [2]

Umf =
9.0× 10−4 d1.8

p [(ρp − ρg)g]0.934

ρ0.066
g µ0.87

g

(4.14)

4.4 Simulation results

4.4.1 The effect of sidewalls

Since our simulations have been carried out in a ”tiny” fluidized bed, it is essential
to check first the effect of the sidewalls on the fluidization behavior.

The effect of particle-wall friction

A number of simulations have been carried out with different particle-wall friction
coefficients under no-slip boundary conditions. The results are given in Figure 4.2.
It is shown that the predicted minimum fluidization velocities Umf agree well with
the values calculated from the correlation given by Eq.(4.14). By contrast, the min-
imum bubbling velocities are overestimated in the simulation, compared to the
correlation (4.12). It is worthwhile to mention that the influence of the particle-
wall friction on the minimum bubbling point is negligible, however. In Figure 4.3
we show the pressure drop for different particle-wall friction coefficients µf . It is
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Figure 4.3: The effect of particle-wall friction on the pressure drop. Hamaker constant A = 0.
Other simulation conditions are the same as Fig.4.2. The particle-wall friction coefficient
µ

(wp)
f is (a) 0.3; (b) 0.2; (c) 0.0.

found that the overshoot of pressure drop near the minimum fluidization point ob-
viously depends on the particle-wall friction coefficients. The bigger the particle-
wall friction coefficient, the higher the overshoot of the bed pressure drop. Without
interparticle van der Waals forces (A = 0), the overshoot is nearly zero for a zero
particle-wall friction coefficient. These findings are in accordance with the recent
experimental results obtained by [31].

The effect of gas boundary conditions

To quantify the effect of wall boundary conditions on the fluidization behavior,
we compare the simulation results obtained for no-slip with free-slip boundary
conditions. In Figure 4.4 we show the fluctuation of local porosities obtained in
the simulations. In both cases the first transition occurs at nearly the same gas
velocity, which means that the minimum fluidization point is not influenced by
the imposed wall boundary conditions. This is not surprising since the inception
of fluidization only depends on the weight of particles inside the bed. As can be
seen, however, in case of the no-slip boundary condition the second transition oc-
curs much later than in case of the free-slip boundary condition, i.e. the transi-
tion from homogeneous fluidization to bubbling fluidization is delayed due to the
no-slip boundary conditions. A detailed check of the simulation data indicates a
Umb = 0.0128 m/s in case of the no-slip boundary condition, while a value of 0.0082
m/s is obtained in the case of free-slip boundary condition, for the simulation con-
ditions given in Figure 4.4. In fact, we carried out two sets of simulations with either
no-slip or free-slip boundary conditions, and in general qualitative agreement has
been found in all the cases we studied, except that always a higher Umb is obtained
in the case of no-slip boundary conditions. According to the correlation by [2], a
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Figure 4.4: The effect of wall boundary conditions on the fluctuation of local porosities.
Circle: free-slip condition; Cross: no-slip conditions. The simulations are carried out under
the same conditions as in Figure 4.1.

Figure 4.5: The effect of wall boundary conditions on pressure drop and bed height. Solid
line: no-slip conditions; Dotted line: free-slip conditions. The simulations are carried out
under the same conditions as in Figure 4.1.
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Figure 4.6: The effect of the interparticle van der Waals forces on Umf and Umb. The sim-
ulation results of Umf (circles) and Umb (triangles), as well as Umf by Eq.(4.14), are plotted
out. The simulations carried out under free-slip boundary conditions. Other parameters
not listed in Table 4.1 are: particle diameter dp = 75µm; particle density ρp = 1495 kg/m3;
gas shear viscosity µg = 1.8×10−5Pa · s; gas molar mass Mg = 2.88×10−2 kg/mole; size of
the fluidized bed 12.0×3.0×1.2 mm; initial bed height H0 = 3.68 mm; and the particle-wall
friction coefficient µf = 0.2.

Umb = 0.0070 m/s is expected for the specified system indicated in Figure 4.4. The
simulated Umb is 17% over-predicted under free-slip boundary conditions (=0.0082
m/s) and 82% over-predicted under no-slip boundary conditions (=0.0128 m/s).
On the other hand, the pressure drop and bed height do not show big deviations
for these two different wall boundary conditions, as depicted in Figure 4.5.

4.4.2 The effect of interparticle van der Waals force

In Fig. 4.6, we show the effect of the strength of the van der Waals forces on the min-
imum bubbling point and minimum fluidization point. The strength of the van der
Waals forces has been formulated in terms of granular Bond number Bo, which
is defined by the ratio of the interparticle van der Waals force acting between two
identical spheres and the single particle weight. The simulations have been con-
ducted under free-slip boundary conditions. It is found that the influence of inter-
particle van der Waals forces on Umf is negligible, and that the predicted minimum
fluidization velocities Umf again agree well with the value obtained from Eq.(4.14).
On the other hand, the predicted Umb increases with an increasing Bond number
Bo, as shown in Figure 4.6. This means that the cohesive interactions between par-
ticles may delay the minimum bubbling point in the gas-fluidized bed, which is in
accordance with previous experimental work. In the case of quite strong cohesive
forces, for instance, Bo ≥ 10, the bed behaves like Geldart C system, and a mini-
mum bubbling point in the normal sense is not observed.



86 ‖ A full 3D simulation of Geldart A particles

Figure 4.7: The effect of the interparticle van der Waals forces on the pressure drop. Simula-
tion conditions are the same as Fig.4.6. The Hamaker constant A is (a) 10−21 J; (b) A = 10−22

J; (c) 0.

In Fig. 4.7 the profiles of pressure drop for different Hamaker constants are
shown. It is found that the overshoot is also affected by the interparticle van der
Waals force: the stronger the interparticle van der Waals force, the higher the over-
shoot of the pressure drop near the minimum fluidization point. So on the basis of
our discrete particle simulations, we conclude that the overshoot of the bed pres-
sure drop for Geldart A particles is due to the particle-wall friction as well as the
interparticle van der Waals forces. This confirms the conclusion of [4].

4.4.3 The effects of particle density

In Fig. 4.8 we show the results of Umf and Umb for different particle densities.
Again, the predicted minimum fluidization points Umf agree well with the corre-
lation given by Eq.(4.14). When the particle density becomes higher, Umf increases
rapidly. By contrast, only a weak dependence of Umb on particle density is found.
The predicted Umb changes slightly from 0.0082 mm/s to 0.0094 mm/s by increas-
ing the particle density from 900 to 2995 kg/m3. Hence the window of homoge-
neous fluidization is decreased for heavy particles, but this is mainly due to the
increase in Umf . Note that the correlation reported in [2], as shown in Eq.(4.12),
does not include any information about the particle density, which suggests a neg-
ligible effect of particle density on Umb. Our simulation results seem to support this
conclusion.

4.4.4 The effects of particle size

In Fig. 4.9 the results for Umf and Umb for different particle diameters are shown.
The predicted minimum fluidization points Umf agree well with the correlation
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Figure 4.8: The effect of particle density on Umf and Umb. The simulation results of Umb

(circles) and Umf (triangles), as well as the Umf by Eq.(4.14) (solid-line) and Umb by Eq.(4.12)
(dash line), are shown. The simulations are carried out under free-slip boundary conditions.
Other parameters not listed in Table 4.1 are: particle diameter dp = 75µm; gas shear viscosity
µg = 1.8×10−5Pa · s; gas molar mass Mg = 2.88×10−2 kg/mole; size of the fluidized bed
12.0×3.0×1.2 mm; initial bed height H0 = 3.68 mm; and the particle-wall friction coefficient
µ

(wp)
f = 0.2.

Figure 4.9: The effect of particle diameter on Umf and Umb. The simulation results of Umb

(circles) and Umf (triangles), as well as the Umf by Eq.(4.14) (solid-line) and Umb by Eq.(4.12)
(dash line), are shown. The simulations are carried out under free-slip boundary conditions.
Other parameters not listed in Table 4.1 are: particle density ρp = 1495 kg/m3; gas shear
viscosity µg = 1.8×10−5Pa · s; gas molar mass Mg = 2.88×10−2 kg/mole; and the particle-
wall friction coefficient µ

(wp)
f = 0.2.
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Figure 4.10: The effect of gas density on Umf and Umb. The inlet gas densities used in the
simulations are 0.5990 (square), 1.1979 (cross), 1.4974 (triangle) and 2.2461 (circle) kg/m3.
The simulations are carried out under free-slip boundary conditions. Other parameters not
listed in Table 4.1 are: particle diameter dp = 75µm; particle density ρp = 1495 kg/m3; gas
shear viscosity µg = 1.8×10−5Pa · s; size of the fluidized bed 12.0×3.0×1.2 mm; initial bed
height H0 = 3.68 mm; and the particle-wall friction coefficient µf = 0.2.

given by Eq.(4.14): the bigger the particle diameter dp, the higher the Umf . A gen-
eral qualitative agreement is found for Umb when the particle diameter dp is larger
than 40 µm. The values of Umb are typically over-predicted by 15% to 25% com-
pared to the correlation given in [2]. For fine particles with a diameter dp < 40µm,
the predicted Umb shows an apparent deviation with the correlation. For instance,
with a particle diameter dp = 37.5µm, a lower Umb (=0.0022 m/s) is obtained. We
remind that we turned off the interparticle van der Waals forces in this particular
simulation (i.e. Hamaker constant A = 0). As mentioned before, the incorporation
of interparticle van der Waals forces can delay the minimum bubbling point and
extend the interval of homogeneous fluidization. For fine particles with a diameter
dp less than 40 µm, the interparticle van der Waals forces may become stronger, and
will shift Umb to a higher value, compared to what is normally observed in the ex-
periments. Thus it can be argued that for fine particles interparticle van der Waals
forces are playing an important role for homogeneous fluidization.

4.4.5 The effects of the gas density

In the present study, the equation of state of ideal gas is used, which gives the rela-
tion between gas pressure and density as follow:

ρg =
Mg p

RT
(4.15)

where Mg is the molar mass of gas phase, R the gas constant (=8.314 J/(mole·K)),
and T gas temperature. To change the gas density, we can either change the mo-
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Figure 4.11: The effect of gas shear viscosity on Umf . The triangles denote the simulation re-
sults while slid line stands for the calculation by Eq.(4.14). The simulations carried out under
free-slip boundary conditions. Other parameters not listed in Table 4.1 are: particle diam-
eter dp = 75µm; particle density ρp = 1495 kg/m3; size of the fluidized bed 12.0×3.0×1.2
mm; initial bed height H0 = 3.68 mm; and the particle-wall friction coefficient µf = 0.2.

lar mass Mg or the gas pressure p. We stress, however, that the gas density is not
uniform inside the fluidized bed since the gas pressure is spatially heterogeneous.
Note that the gas density is taken as the density at the inlet. In fact the bed pressure
drop used in the simulation is quite small compared to the absolute gas pressure,
thus the gas density can be determined solely by the inlet gas pressure. First we
change the molar mass Mg of the gas phase from 1.44×10−2 to 5.04×10−2 kg/mole.
The impact on the fluctuation of local porosity is shown in Figure 4.10. As can
be seen, except in the bubbling regime, we can hardly observe the differences for
different gas densities. It means that the effect of gas density on both Umf and
Umb are negligible. Actually in the correlations given in [2], as shown in Eqs.(4.14)
and (4.12), only a weak dependence of Umb and Umf on gas density is found, i.e.
Umb ∼ ρ0.06

g and Umf ∼ ρ−0.066
g .

4.4.6 The effect of the gas viscosity

In Figures 4.11 and 4.12 we show Umf and Umb for different gas shear viscosities.
For simplicity, the interparticle van der Waals forces are switched off by setting the
Hamaker constant A = 0. Again, the minimum fluidization velocities agree well
with the values calculated from Eq.(4.14). Umf experiences a continuous decrease
as µg increases. The minimum bubbling velocities, however, manifest a systematic
deviation from the empirical correlation given in [2]. As illustrated in Figure 4.12,
Umb first drops and subsequently increases for an increasing shear viscosity, pass-
ing a minimum point at µg = 2.0 × 10−5Pa · s. This is obviously in contradiction
with Eq.(4.12), where the minimum bubbling velocity decreases monotonously for
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Figure 4.12: The effect of gas shear viscosity on Umb. The circles denote the simulation re-
sults while dash line stands for the calculation by Eq.(4.12). The simulations are carried out
under the same conditions as in Figure 4.11.

Figure 4.13: The predicted Umb with different gas shear viscosities, plotted on a log-log scale.
The crosses denote the simulation results up to µg 2.0×10−5Pa · s, the solid-line is obtained
by fitting all the data, and the dash-line is a linear fit of the first 5 data. The simulations are
carried out under the same conditions as in Figure 4.11.
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increasing µg. At present, we have no explanation why a minimum in Umb is ob-
served in our simulations. We should mention, however, that the correlation of [2]
was actually obtained with gas shear viscosities ranging from 0.9 to 2.0×10−5Pa · s.
In this regime, the Umb as predicted from our simulations also experiences a con-
tinuous decrease with an increasing gas shear viscosity. It would be interesting to
preform experiments with gas shear viscosities larger than 2.0×10−5Pa · s, where
our simulations predict an increase in Umb.

To further compare with the correlation of [2], we fit these data to a linear func-
tion, which yields a slope of -0.267. This value is not far off from the slope given
by Eq.(4.12), namely -0.347. If we only fit data up to 1.8 × 10−5Pa · s, which cor-
responds to the shear viscosity of air under normal condition (T=293 K), a slope of
-0.354 is obtained.

4.5 Conclusions and discussions

In this research, computer simulations based on the soft-sphere discrete particle
model (DPM) have been used to investigate the fluidization behavior of Geldart A
particles. The simulations have been carried out in a 3D fluidized bed, with inter-
particle van der Waals forces that follow from the Hamaker theory. We first studied
the effects of the sidewalls on the fluidization behavior. It has been found that
the generation of the overshoot of the pressure drop near the minimum fluidiza-
tion point is affected by both the particle-wall friction and the interparticle van der
Waals forces, which confirm the experimental results by [31] and [4].

In all the cases we studied in this research, the predicted Umf was in a good
agreement with the correlation by [2]. The minimum bubbling velocity Umb, in
general, shows a qualitative agreement with this correlation. First, the wall bound-
ary conditions are found to have a significant impact on the predicted Umb. The
free-slip boundary conditions seems to predict a lower Umb compared to the no-
slip boundary conditions in our small-scale simulations. The predicted Umb under
free-slip boundary conditions is found 15% to 25% higher than the value calculated
from the correlation, while under no-slip boundary conditions this amounts more
than 80%. Second, the action of the interparticle van der Waals force is found to
delay the origin of bubbles and extend the interval of homogeneous fluidization.
The higher the granular Bond number, the higher Umb, until a transition to Geldart
C behavior is encountered, where no Umb can be discerned. Third, the particle den-
sity and gas density are shown to have a weak effect on Umb. For heavy particles,
the window of homogeneous fluidization is decreased mainly due to the increase
in Umf . By contrast, it has been found that the particle size has a strong effect on
Umb. The predicted Umb for different particle diameter agrees with the correlation
except for fine particles with a diameter dp < 40µm. This may be due to the fact that
we turn off the interparticle van der Waals forces in these particular simulations. It
can be argued that for larger particles with a diameter dp > 40µm the interparticle
van der Waals forces may have a negligible effect on the formation of homogeneous
fluidization. For fine particles, however, a proper incorporation of interparticle van
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Figure 4.14: The snapshots of the simulation results of the homogeneous fluidization of
Geldart A particles. The far left graph shows the fluidized bed in 3D. In the graphs 1 to 5, the
cross sections of the bed (cutting through the width direction) are shown. The simulation
conditions are the same as in Figure 4.1.

der Waals forces is highly desired. Finally, the effect of the gas viscosity has been ex-
amined. We found that the minimum bubbling velocities from our simulations for
different gas viscosity show a systematic deviation from the empirical correlation
by [2]. We found that with an increasing gas shear viscosity the Umb experiences a
minimum point near 2.0× 10−5Pa · s, while in the correlation by [2] the minimum
bubbling velocity decreases monotonously for increasing µg. Interestingly, if we fit
the data up to 2.0× 10−5Pa · s, a slope of -0.267 has been obtained, which is not far
away from the value (=-0.347) given by Eq.(4.12). Clearly a more elaborate study of
the effect of gas viscosity is required, both experimentally and numerically.

We want to stress, however, that it is a non-trivial task to determine the mini-
mum bubbling velocity Umb, since there is no unique, quantitative formalism to re-
late Umb to parameters that can be directly measured in the discrete particle simu-
lations. This is directly related to the fact that the minimum bubbling point is rather
loosely defined, namely, as the instant at which ”the first obvious bubble” appears
in the fluidized bed. At present, the most accurate and reliable way to determine
the minimum bubbling point is probably by direct observation of the snapshots of
the simulation results. But this is of course prone to errors, which is especially the
case when there are some void structures present in the homogeneous fluidization.
In Figures 4.14 and 4.15, we illustrate the typical results for both homogeneous flu-
idization and bubbling fluidization. As can be seen, even during the homogeneous
fluidization, we can still find some void structures. It would be extremely difficult
to define a formalism (i.e. a computer code) which could discriminate the voids
and cavities of homogeneous fluidization from the first obvious bubble, just on the
basis of the particle coordinates.
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Figure 4.15: As in Fig.4.14, but for the bubbling fluidized bed. The simulation conditions are
the same as in Figure 4.1
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5
Kinetic theory of granular flows for Geldart A

particles: test by a discrete particle model

ABSTRACT

The classical two-fluid model, based on the kinetic theory of granular flows (KTGF),
provides a very promising theoretical framework for predicting large-scale gas-solid
two-phase flows. However, thus far the two fluid model has not been successful in
describing gas-solid flows of Geldart A particles. As the kinetic theory was originally
developed for cohesiveless particles, it is essential to check if the theory can still work
for Geldart A particles, which are slightly cohesive. In this research, a soft-sphere dis-
crete particle model (DPM) is used to study the detailed particle-particle interactions
in periodic boundary domains, where interparticle van der Waals forces are taken
into account, and with no gas phase present. In our simulations, we (1) compare the
results for both the hard-sphere and the soft-sphere discrete particle model for cohe-
siveless particles, with the theoretical predictions obtained from the kinetic theory of
granular flows, and (2) study the effect of the cohesive forces in the soft-sphere model
and explore a way to modify the current kinetic theory according to the soft-sphere
DPM simulation results. The information obtained from these simulations can be
further incorporated into the KTGF based two-fluid model.

Based on: M. Ye, M. A. van der Hoef and J. A. M. Kuipers, 2004. From discrete particle model to a con-

tinuous model of Geldart A particles. Accepted by Chemical Engineering Research and Design.
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5.1 Introduction

Group A particles of the Geldart classification [1] are often encountered in chemical
engineering. An important example is the fluid catalytic cracking (FCC) catalysts,
which are widely used for production of gasoline from oil. For certain gas velocities,
this type of particles are found to display a unique homogeneous expansion in gas-
fluidized bed reactors, where the solid fraction is normally very high (in the range of
0.5∼0.6). However, up to date, the physical mechanism behind this homogeneous
fluidization is still not completely understood. This greatly prevents construction
of a reliable continuous model for dense gas-solid two-phase flow with Geldart A
particles. Such models, however, are of great practical interest in the design and
scale-up of engineering-size scale fluidized bed reactors.

Recently Lettieri et al. [2] used the particle-bed model, originally developed by
Chen et al. [3], to investigate the homogeneous fluidization of Geldart A particles. It
was demonstrated that a homogeneous expansion can be obtained in this particle-
bed model, however, in this particle-bed model an artificial particle-phase elastic-
ity force is required. In the past decades, two-fluid models based on the kinetic the-
ory of granular flows (KTGF) have experienced a rapid development and are widely
applied to various types of gas-solid two-phase flows [4–7]. However, most of the
studies have focused on either large particles (Geldart B or D particles) or dilute
systems (circulating fluidized beds). Very little work has been done on dense sys-
tems of fine particles, in particular Geldart A particles. Recently, McKeen and Pugs-
ley [8] reported a simulation of bubbling fluidization of Geldart A particles. It was
shown that without modifying the drag laws, the bed expansion is over-predicted
and the flow patterns observed in the simulations depart significantly from those
observed in real bubbling fluidized beds. Since the diameter of Geldart A particles
is less than 120 µm, it is expected that the surface cohesion between particles will
play a role in the fluidization behavior. McKeen and Pugsley [8] argued that due to
cohesion, the particles would tend to form clusters, which will reduce the average
drag force acting on a single particle. Nevertheless, the influence of the cohesion
on the KTGF has not been fully investigated. The KTGF was originally developed
from the kinetic theory of dense gases, by taking into account the inelasticity of
particle-particle collisions [9]. Recently, Kim and Arastoopour [10] tried to extend
the kinetic theory to cohesive particles, however, the final expression for the partic-
ulate stress is quite complex and difficult to incorporate in the current continuous
models.

In this chapter, a soft-sphere discrete particle model (DPM) will be used to test
the kinetic theory of granular flows, with the emphasis on the excess compressibil-
ity since it plays a central role in calculation of particle phase pressure and other
transport coefficients. In order to test our simulation procedure, we first compare
the results from both the soft-sphere model and the hard-sphere model for simple
elastic spheres with the prediction from kinetic theory. Once we have established
that the soft-sphere model yields results similar to those from the hard-sphere
model, we investigate the effect of the ”heating” procedures, the coefficients of
restitution, and the spring stiffness on the excess compressibility. Finally, we turn
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on the cohesive forces and investigate the influence of the cohesion on the excess
compressibility. Note that at present, the effect of the gas phase is not considered.

5.2 Kinetic theory of granular flows

5.2.1 Elastic particles

If no energy dissipation is present during particle-particle collisions, the kinetic
theory of molecular gases, as originally developed by Chapman and Enskog [11],
can be applied directly. The simplest situation is the ideal gas, where the motion of
particles is considered as the only source for momentum and kinetic energy trans-
fer in the system. In that case the particulate pressure p0, the shear viscosity µ0 and
thermal conductivity λ0 are [11]:

p0 = nkBT (5.1)

µ0 =
5

16d2

√
mkBT

π
(5.2)

λ0 =
75mkB

64d2

√
mkBT

π
(5.3)

where n is the particle number density, kB the Boltzmann constant, m is the mass
of a single particle, d the particle diameter, and T the granular temperature, which
is defined as:

T =
2Ek

3NkB
(5.4)

with Ek representing the kinetic energy of the system, and N the particle number.
For the dense gas system, however, the collisions between particles will also con-
tribute significantly to the transfer of momentum and kinetic energy. The effect of
the particle-particle collisions was first studied by Enskog [11]. Based on the stan-
dard Enskog theory (SET), the particle pressure is given by:

p1 = nkBT (1 + 4εsχ) (5.5)

where εs is the solid volume fraction, and χ the radial distribution function. From
Eq.(5.1), it follows that Eq.(5.5) can be rewritten in term of the excess compressibil-
ity y1 = 4εsχ,

p1 = p0(1 + y1) (5.6)

According to the SET, the shear viscosity and the thermal conductivity are com-
pletely determined by the excess compressibility via:

µ1 = 4εsµ0

(
1
y1

+
4
5

+ 0.7614y1

)
(5.7)

λ1 = 4εsλ0

(
1
y1

+
6
5

+ 0.7574y1

)
(5.8)
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5.2.2 Inelastic particles

For the inelastic particles, there is a general consensus on the form of the particle
pressure in the literature, which is given as [9]:

p2 = p0 [1 + 2(1 + e)εsχ] (5.9)

In the case of e = 1, Eq.(5.9) reduces to Eq.(5.5). We can write Eq.(5.9) again in
terms of an excess compressibility y2:

p2 = p0(1 + y2), (5.10)

with
y2 = 2(1 + e)εsχ = y1 + 2(e− 1)εsχ.

The effect of the dissipation is thus that the excess compressibility is modified by
a factor (e + 1)/2 compared to the elastic case. In terms of the modified excess
compressibility y2, the expression for the shear viscosity and thermal conductivity
then take the same form as Eq.(5.7) and (5.8), only with a slightly different prefactor
[7]:

µ2 = 4.064εsµ0

(
1
y2

+
4
5

+ 0.761y2

)
(5.11)

λ2 = 4.10052εsλ0

(
1
y2

+
6
5

+ 0.748y2

)
(5.12)

5.2.3 Radial distribution function

As shown in the previous paragraph, the radial distribution function χ is of funda-
mental importance in the kinetic theory of dense granular flows. In essence, the
radial distribution function gives the correction to probability of a collision due to
the presence of other particles. In the case of slightly inelastic collisions, where the
collisional anisotropy plays a negligible role, the radial distribution function only
depends on the local particle volume fraction. In the kinetic theory of granular
flows, normally only the value at the point of contact is of interest. Therefore in
literature, the radial distribution at the point of particle contact is mostly given as
χ0(εs).

In the early work of granular flows [9], the radial distribution function for dense
rigid spherical gases proposed by Carnahan and Starling [12] is applied:

χ0(εs) =
2− εs

2(1− εs)3
. (5.13)

This expression is in almost exact agreement with the results from molecular
dynamics simulations for particle volume fractions up to about 0.55, but above
this it predicts values that are too low. To obtain better agreement for high vol-
ume fractions, and prevent particle volume fractions higher than the theoretically
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Figure 1. The interparticle van der Waals force according to the Hamaker theory.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1: The interparticle van der Waals force according to the Hamaker theory.

maximum packing density for uniform spheres, εmax
s = 0.7405, Savage [13] used a

simple approximate expression for the radial distribution in his later work:

χ0(εs) =

[
1−

(
1− εs

εmax
s

)1/3
]−1

. (5.14)

Subsequently, Ding and Gidaspow [5] modified Eq.(5.14) to get a better match
with the molecular dynamics data of Alder and Wainright [14] for high solid frac-
tions:

χ0(εs) =
3
5

[
1−

(
1− εs

εmax
s

)1/3
]−1

. (5.15)

However, this radial distribution function does not approach 1 for dilute sys-
tems. The best fit to the data by Alder and Wainright [14] is presented by Ma and
Ahmadi [15]:

χ0(εs) =
1 + 2.5εs + 4.5904ε2

s + 4.515439ε3
s[

1− (εs/εmax
s )3

]0.67802 (5.16)

with εmax
s = 0.64356.

5.3 Discrete particle model

In a discrete particle model, the equations of motion of the particles are solved
for each individual particle. The discrete particle models can be roughly divided
into two groups: time driven (”soft-sphere”) and event-driven (”hard sphere”). In
hard-sphere simulations the particles are assumed to interact through instanta-
neous, binary collisions. In between the collisions, one has free flight of the parti-
cles (no force), so the system evolves directly from one collision to the next [16,17].
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Figure 2. The interparticle van der Waals potential according to the force shown in Figure 
1.   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2: The interparticle van der Waals potential according to the force shown in Figure
5.1.

In soft-particle simulations, the system evolves in time from Newton’s law, using a
fixed time step, and the particles are allowed to overlap slightly [18, 19]. The con-
tact forces are calculated from the deformation history of the contact, for which
different models can be used. The simplest and most widely used soft-sphere ap-
proach is the linear spring/dash-pot model originally developed by Cundall and
Strack [20]. In this study, we will use the soft-sphere approach, although the hard-
sphere interaction was a basic assumption in developing the kinetic theory. The
reasons for using the soft-sphere model are twofold: (1) in the hard-sphere ap-
proach the occurrence of multiple contacts at the same time is not possible; (2)
the incorporation of cohesive force between particles is not straightforward in the
hard-sphere model, since the update of the coordinates in that model is not based
on forces.

5.3.1 Contact force

Following the approach by Cundall and Strack [20], the contact force between two
spheres is formulated by

F(c)
ij = −Kδ nij − η vij (5.17)

where K is the spring stiffness, δ the overlap between particles, nij the unit vec-
tor pointing from particle i to j, vij the relative velocity between particles. The
damping coefficient η is determined by the coefficient of restitution e. The details
of this model can be found in Chapter 2. No frictional force has been considered at
present since it typically is ignored in the KTGF.

5.3.2 Cohesive force

The cohesive interactions between particles are typically short-range in nature.
Subject to different conditions, the cohesive forces can include van der Waals
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forces, liquid bridges, etc. In ”dry” granular flows of fine particles, the van der Waals
force is the dominating cohesive force, and will be the only one considered in this
study. The formulation of the interparticle van der Waals force was first derived by
Hamaker [21]. For two spheres with the same diameter d, and with interparticle
distance (from center to center) rij > d, the van der Waals force equals

F(v)
ij =

Ad

12Z2
ij

nij , (5.18)

with Zij (= rij − d) the intersurface distance. To avoid the singularity that arises
when two spheres are at contact (Zij = 0), we define the van der Waals force for
Zij ≤ Z0 as:

F(v)
ij =

Ad

12Z2
0

nij , (5.19)

where Z0 is a pre-defined cut-off value. The interparticle potential corresponding
to these forces is:

U = − Ad

12Zij
(Zij > Z0), (5.20)

U = − Ad

12Z2
0

(rij − d) (Zij ≤ Z0), (5.21)

In Figures 5.1 and 5.2, we show the interparticle van der Waals interaction as a
function of the interparticle surface distance. Note that the minimum of the cohe-
sive potential is:

Umin = − Ad

12Z0
. (5.22)

In a system with gravity present, the magnitude of the cohesive force is normally
related to the weight of a single particle. Since the gravitational forces are absent in
this work, it is essential to find different gauge for the cohesive force. As in molec-
ular simulations, we scale the cohesive potential with the average kinetic energy of
a single particle. Thus we define a scaling factor ϕ as:

ϕ =
|Umin|
kBT

=
Ad

12Z0
· 1
kBT

. (5.23)

For a particle with a diameter d < 100µm, a value Z0 = 4.0 nm is commonly
used [22]. In this research, we keep the ratio d/Z0 constant, which has a value of

d

Z0
∼ 2.5× 105.

We take the radius of a single particle as the unit of length in this research, i.e.
r = 1.0; In these units the cut-off value of the inter-surface distance is set to Z0 =
8.0×10−6. Furthermore the Boltzmann constant kB is defined as 1.0, so that scaling
factor ϕ equals

ϕ =
5
24
× 105 A

T
. (5.24)
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Figure 1. The image surface inside the cubic box.

3. Measurement of transport coefficients in DPM model

The measurement of transport coefficients in discrete particle model is quite interesting

since it provides a close look of the physics of these quantities. In this part, the methods

to measure the particle pressure P , shear viscosity µp, diffusion coefficient Dp, and

thermal conductivity λp in the soft-sphere code are described.

3.1. Particle pressure

Consider N particles that occupy a cubic box having a volume V and side length

L. Imagine an arbitrary surface of area A = L2 inside the box, see Figure 1. For

convenience, it is assumed that this surface is perpendicular to the x axis. The particle

pressure can be defined as the force per unit area acting normal to this surface,

Px =
Fx

A

According to Newton’s second law, this can be written as

Px =
1

A

d(mvx)

dt

Thus the pressure is actually a momentum flux, which is the amount of momentum that

crosses a unit area of the surface in unit time. In general this flux is composed of two

parts: (a) Pm, the momentum carried by the particles themselves as they cross the area

during the time interval dt. This part is called kinetic pressure. (b) Pf , the momentum

transferred as a result of forces acting between particles that lie on different sides of the

surface. This term is called collision pressure.

Pp = Pm + Pf

3.1.1. kinetic pressure Pm The momentum flux carried by the motion of particles Pm

can be easily obtained. The x component of Pm is given by

Pmx =
Nm

V
v̄2

x (25)

Figure 5.3: The imaginary surface inside the cubic box.

It is also important to compare the magnitudes of the cohesive forces with the
contact force. As the maximum overlap between two particles was pre-defined as
0.005d, the maximum contact force will be 0.005Kd. The ratio between the cohesive
force and contact force is then

F
(v)
ij

F
(c)
ij

∼ 1
0.005Kd

· Ad

12Z2
0

= 2.6× 1011 A

K
. (5.25)

In any case we should keep the ratio F
(v)
ij /F

(c)
ij in the range 0∼10% to prevent

very strong cohesion between particles, since that could give rise to clusters, the
study of which is beyond the scope of this research.

The measurement of key quantities in discrete particle model provides a close
look of the physics of these quantities. In the next part, the methods that are used
to measure the particle pressure P and shear viscosity µp in the soft-sphere code
are described.

5.4 Particle pressure Measurement

We consider a cubic box having a volume V and side length L, which contains N
particles. Imagine an arbitrary surface of area A = L2 inside the box, see Figure
5.3. For convenience, it is assumed that this surface is perpendicular to the x axis.
The particle pressure can be defined as the force per unit area acting normal to this
surface

Px =
Fx

A
(5.26)
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According to Newton’s second law, this can be written as

Px =
1
A
· d(mx)

dt
(5.27)

The overall particle phase pressure is

Pp =
1
3
(Px + Py + Pz) (5.28)

Thus the pressure is actually a momentum flux, which is the amount of momentum
that crosses a unit area of the surface in unit time. In general this flux is composed
of two parts: (a) Pm, the momentum carried by the particles themselves as they
cross the area during the time interval dt. This part is called kinetic pressure. (b)
Pf , the momentum transferred as a result of forces acting between particles that lie
on different sides of the surface. This term is called collision pressure. So we have

Pp = Pm + Pf (5.29)

The kinetic pressure Pm, which is the momentum flux carried by the motion of
particles, can be directly obtained from the kinetic energy:

Pm =
2N

3V
Ēk. (5.30)

An expression for Pf in terms of the interparticles forces can be obtained via the
virial theorem. This gives that (e.g. see Haile [23]) Pf can be written as

Pf =
1
A

∑
i

∑
j

Fij · rij , (5.31)

where Fij is the pair-wise interparticle force. Thus the total instantaneous particle
pressure Pp is given as

Pp =
2N

3V
Ēk +

1
A

∑
i

∑
j

Fij · rij . (5.32)

The collision pressure, if normalized by the kinetic pressure, is actually the so-
called excess compressibility y. For the soft-sphere model, the excess compress-
ibility y is given by

y =
1

2Ē

N−1∑
i=1

N∑
j=i+1

Fij · rij , (5.33)

while for the hard-sphere model [23]

Pp =
m

2Ēt

Nc∑
i=1

∆vij · rij . (5.34)
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Table 5.1: parameters used in the simulations.
Parameters Value
Particle number, N 500
Particle radius, r 1
Particle density, ρs, 1
(Soft-sphere model) Normal spring stiffness, K, 70000
Time step, ∆ t 10−4

Granular temperature, T , 1 or 0.01
Boltzmann constant, kB , 1
Cut-off value for inter-surface distance between particles, Z0, 10−6

Note: all parameters are normalized.

5.5 Simulation procedure

In this research, periodic boundary domains are used in order to minimize the ef-
fects of the size of the container, since we have a relatively small amount of parti-
cles (N = 500) in our system, for reasons of computational efficiency. Due to the
inelastic collisions, the particles will continuously dissipate energy, which would
eventually cause the particles come to a quiescent state. In this work, we therefore
drive the system by two different techniques: (1) rescaling the particle velocities
every time step, according to the desired granular temperature; (2) accelerating the
particles randomly. All the parameters are normalized by the particle radius, par-
ticle density, and granular temperature. The parameters that are not varied in the
simulations are listed in Table 5.1. The values of other parameters will be given in
the appropriate section.

5.5.1 Rescaling

In this procedure, suppose v(0) is particle velocity vector at the end of each time
step, we rescale the particle velocity by

v = Lv(0), (5.35)

where L equals

L =

√
3NpartT

2E(0)
. (5.36)

Here E(0) is the kinetic energy at the end of each time step.

5.5.2 Random accelerating

Another method of driving is by applying a random force to each particle. In this
case, the velocity v is given by

v = v(0) + α Ru∆ t, (5.37)
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Figure 5.4: Simulation results for both the soft-sphere model (squares) and the hard-sphere
model (the crosses), compared to the Carnahan-Starling equation (solid-line). The parti-
cles are initially arranged in a face-centered cubic (FCC) configuration. Spring stiffness
K = 70000, Hamaker constant A = 0.0, granular temperature T = 1.0, and coefficient
of restitution e = 1.0. The system is driven by rescaling.

where R ∈ (−1, 1) is a random number, and u the unit vector. The parameter α is
used to control the magnitude of the acceleration.

5.6 Results

5.6.1 Comparisons with the hard-sphere results

First, we should check whether the soft-sphere model gives results comparable to
those from the hard-sphere model. To this end, we carried out several sets of simu-
lations with particles starting either from random positions or face-centered cubic
(FCC) positions. The hard-sphere simulation results for these two configurations
have been well documented by many researchers [12, 24–26]. It has been shown
that the Carnahan-Starling equation can excellently represent these results up to
the solid-fraction of 0.55 [12]. According to the Carnahan-Starling equation, the
excess compressibility of a hard-sphere system can be represented as:

y =
4εs − 2ε2

s

(1− εs)3
. (5.38)

In Figure 5.4 we show our simulation results for smooth, elastic and cohesive-
less spheres in periodic boundary domains, where the particles are initially placed
in the face-center cubic (FCC) grids. For such systems, Hoover et al. [25] observed a
phase transition from the fluid state to a solid state at y = 7.27. As can be seen, both
the hard-sphere and soft-sphere simulations clearly display this transition point.
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Figure 4. Excess compressibility as in Figure 3, but now as a function of the coefficient f 

restitutions, for one solid fraction (εs = 0.05). The excess compressibility has been 
normalized by y obtained in the case of coefficient of restitution e = 1.0.   

 
 
 
 
 
 
 
 
 
 
 

Figure 5.5: Excess compressibility as in Figure 5.4, but now as a function of the coefficient
restitutions, for one solid fraction (εs = 0.05). The excess compressibility has been normal-
ized by y obtained in the case of coefficient of restitution e = 1.0. The system is driven by
rescaling.

We also compared the simulation results with inelastic spheres, which are
shown in Figure 5.5. The solid fraction in the initial configuration is fixed at 0.05. It
is shown that in this dilute system, the soft-sphere model can reproduce the results
of the hard-sphere simulations, and both simulations results are in agreement with
Eq.(5.38) (solid line). We will show in the following sections, thar also for the dense
system, very good agreement between the hard-sphere and soft-sphere results can
be found. The conclusion is therefore that the soft-sphere model can be used as an
alternative for the hard-sphere model, as far as the calculation of the excess com-
pressibility is concerned.

5.6.2 Effect of the procedures

To accurately calculate the excess compressibility, it is essential to have the sys-
tem in an equilibrium state. As discussed before, the collisions between particles
will dissipate kinetic energy of the system, so that an equilibrium state can only
be reached when the system is driven by external forces. The two procedures dis-
cussed above can in principle be used to drive the system. However, we find these
two procedures can lead to different behaviors of the granular system. In Figure 5.6,
we show the simulation results for the face-centered cubic (FCC) configurations
driven by rescaling procedure. As can be seen, for all solid fractions an equilibrium
state is reached. However, this equilibrium is found to be metastable, as after some
time (depending on the solid fraction) the compressibility already decreases. This
break-down of the equilibrium might be due to the formation of clusters, which
is a well-known feature of granular system with inelastic collisions. However, it is
extremely difficult to distinguish the clusters from the snapshots in very dense sys-
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Figure 5.6: The evolution of excess compressibility for dense systems with solid fraction εs =
0.40, 0.45, 0.55, and 0.60, respectively. The coefficient of restitution e = 0.9. The particles
are initially arranged in a face-centered cubic (FCC) configuration. The system is driven by
either rescaling (left) or random acceleration (right).
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Figure 5.7: The instantaneous velocity distribution for a granular system with solid fraction
εs = 0.60. The excess compressibility is shown in Figure 5.6. The velocity distribution is
taken for the y direction at: t=0 (dotted line); t=25 (squares); and t=35 (solid line). The dash
line is a fit of the squares using a Gaussian function.
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tems. Alternatively, we check the velocity distribution of particles. In Figure 5.7, the
typical instantaneous velocity distributions for different instants have been shown.
The initial velocities of particles are generated randomly. After a sufficient num-
ber of particle-particle collisions, the velocity distribution develops into a Gaussian
distribution, which leads the system to an equilibrium state. But after a quite large
number of collisions, the velocity distribution becomes very narrow, which means
most of particles are having a very small velocity or even at rest. This may indicate
that denser regimes have formed where particles experience more frequent colli-
sions, and their kinetic energy dissipates more quickly. Thus the velocities of par-
ticles in the denser regime are relatively smaller than particles in the dilute regime.
In the rescaling procedure, the slower particles will gain less kinetic energy and re-
main slower.

This break-down is also found in random configurations. In Figure 5.8 we show
the simulation results for random systems. As can be seen, the system quickly
transforms to a non-equilibrium state and it is difficult to get the statistical infor-
mation for the equilibrium sate. It is not clear at present whether the transition
from the equilibrium to the non-equilibrium is an inherent phenomenon or not.
Also, it is not understood why in the non-equilibrium state, the curves for y seem
to collapse onto one single curves (see Figure 5.6). Nevertheless, the transition to
the non-equilibrium state can be avoided by using the random acceleration proce-
dure. In Figure 5.6 we show the results using this method. It is clearly demonstrated
that, at least within current simulation time, that the system remains in equilib-
rium. Also, the plateau value for y corresponds with the intermediate plateau value
of the metastable state of the system driven by scaling.

However, we would point point that, although the random acceleration proce-
dure can generate a stable equilibrium state, it requires a relatively longer simula-
tion time. On the other hand, the rescaling procedure is quite efficient for lower
solid fractions (less than 0.45). Thus in this study, if not specified, the random ac-
celeration procedure will be used to simulate the denser system with a solid frac-
tion higher than 0.45 while the rescaling procedure is used to lower solid fraction
(less than 0.45), where we take the plateau value found in the metastable equilib-
rium state as the final results for the excess compressibility.

5.6.3 Dependence on the spring stiffness

Although the linear spring/dashpot model provides a convenient way to calculate
the interparticle contact force, it is still too simple for investigating the detailed
particle-particle interactions. For example, the definition of the spring stiffness, K,
is somewhat artificial in this model. It has been argued that a rigorous selection
of the spring stiffness should be directly related to the material properties of the
particles. Yet this may lead to a relatively large value of the spring stiffness, and
consequently an unrealistic small time step for the discrete particle simulations. In
our soft-sphere model, the selection of the spring stiffness is based on the follow-
ing criteria: (1) the corresponding time step should be reasonable; (2) the overlap
should have a maximum value equal to 0.5% of the diameter of the particle. Clearly
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Figure 5.8: The instantaneous velocity distribution for a granular system with solid fraction
εs = 0.54 and 0.60. The coefficient of restitution e = 0.9. The particles are initially placed
randomly. The system is driven by either rescaling (left) or random acceleration (right).
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Figure 5.9: The evolution of the excess compressibility in soft-sphere simulations for random
initial particle positions. Hamaker constant A = 0.0, granular temperature T = 1.0, and solid
fraction εs = 0.54, and the coefficient of restitution e = 0.9 (right) and 1.0 (left). The system
is driven by rescaling.

the larger the spring stiffness, the closer it resembles a hard-sphere system. Yet, the
computation will be very expensive. The classical kinetic theory of granular flows is
based on the assumption of instantaneous and binary collisions of hard-spheres.
In soft-sphere simulations with a finite spring stiffness, multiple contacts will al-
ways be present. Therefore, it is a prerequisite to investigate how the presence of
multiple contacts will influence the kinetic theory of granular flows. To this end, we
carry out two sets of simulations with exactly the same initial configuration, using
four different spring stiffness: 700, 7000, 70000, and 700000. In the first and second
set of simulations the coefficient of restitution is set to 1.0 and 0.9, respectively. In
both sets of simulations, the solid fraction is fixed to 0.54, which is a dense regime
typically encountered in the homogeneous fluidization of Geldart A particles.

In Figure 5.9, we show the evolution of the excess compressibility with time.
For small spring stiffness (K = 700 or 7000), the system displays the feature of a
non-equilibrium state for both elastic and inelastic system, since the excess com-
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Figure 5.10: The comparisons with the excess compressibility from different spring stiffness.
The simulation conditions are specified in Figure 5.9. Crosses are the simulation results for
e = 0.9, and squares for e = 1.0. The solid line represents the correlation by Ma and Ahmadi,
and dash line represents the correlation by Carnahan and Starling.

pressibility continuously decreases with time, and the equilibrium ”plateau” value
is not reached. This suggests that an artificially small spring stiffness may lead to
the failure of prediction of excess compressibility. For large spring stiffness (K =
70000 and 700000), the simulations with a system of elastic particles (e = 1.0) are
shown in Figure 5.9. As can be seen, an equilibrium state is reached. In Figure
5.10 we compare the steady state values with correlations for hard-sphere systems.
From Figure 5.10, it can be argued that a reasonably large spring stiffness can be
used to get the correct excess compressibility. We also check with an inelastic sys-
tem (e = 0.9). For large spring stiffness (K = 70000 and 700000) only a short equi-
librium phase has first been established, after which a break-down of this equilib-
rium state is observed (as shown in Figure 5.9). As discussed before, this indicates
that the dissipative nature of the particle-particle collisions will lead the system to
form clusters, which leads to a non-equilibrium state. The excess compressibility
is over-predicted for inelastic systems. Therefore to calculate the excess compress-
ibility for dense inelastic systems, it is essential to use the random acceleration
procedure.

5.6.4 Effect of the coefficient of restitution

As can be seen from Eq.(5.9), the kinetic theory of granular flow predicts that the
excess compressibility is a linear function of the coefficient of restitution e,

y = 2(1 + e)εsχ. (5.39)

Note that the Eq.(5.9) is derived under the assumption that the particles are slightly
inelastic, i.e. e ∼ 1.0. Therefore, it is necessary to examine the effect of the coeffi-
cient of restitution on the excess compressibility and check the validity of Eq.(5.9).
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We performed several sets of simulations for different coefficients of restitu-
tion. As was discussed above, in the case of dense regime, the rescaling procedure
will not lead to a steady excess compressibility. Thus we use the random accelera-
tion procedure for the solid fraction higher than (including) 0.45 and the rescaling
procedure for solid fraction less than 0.45. In Figure 5.11, the excess compressibil-
ity has been shown as a function of the solid fraction for different coefficients of
restitution e. These results are compared with the Eq.(5.39), where the radial dis-
tribution function χ is taken either from the Ma-Ahmadi correlation or from the
Carnahan-Starling correlation. As can be seen the excess compressibility agrees
well with both correlations for a solid fraction εs up to 0.55. For extremely dense
systems, i.e. εs > 0.55, the Ma-Ahmadi correlation presents a much better estimate
of the excess compressibility for slightly elastic particles (e = 0.8 ∼ 1). A more de-
tailed comparison with the Ma-Ahmadi correlation is shown in Figure 5.12. There-
fore the Ma-Ahmadi correlation is suggested to be a good representative of the ra-
dial distribution function in the kinetic theory of granular flows.

5.6.5 Effect of the cohesive force

For Geldart A type particles, the cohesive van der Waals forces cannot be neglected.
However, the influence of such forces on the excess compressibility has not been
reported before. In Figure 5.12, the results for the excess compressibility for dif-
ferent Hamaker constants A are shown. For simplicity a coefficient of restitution
e = 1.0 is used. We consider two different Hamaker constants: A = 3.0× 10−12 and
A = 3.0×10−10. From Figure 5.12, we see that for these two Hamaker constants, the
simulation results show a very good agreement with Eq.(5.39) if the radial distrib-
ution function χ is calculated from the Ma-Ahmadi correlation. Only a very small
deviation has been found in the dense regimes, which suggests that the cohesion
has only a quite weak influence on the excess compressibility, at least for the values
of Hamaker constant that we studied.

However, it should be noted that the quantification of the cohesive force is
not straightforward, since there is no reference force (such as gravitational force)
in these systems. We consider these systems as slightly cohesive since the ratio
of the cohesive potential and the average kinetic energy per particle is small, i.e.
ϕ = 6.25 × 10−8 ∼ 6.25 × 10−6. At the same time, the ratio between the cohesive
force and contact force ranges from 1.11× 10−5 to 1.11× 10−3. If a strong cohesive
force is present, particles in the system may form complicated structures, whereas
a homogeneous state is one of the basic assumptions underlying the kinetic the-
ory of granular flow. It is extremely difficult to directly measure the cohesive forces
between Geldart A particles since this type of forces strongly depend on the sur-
face properties of particles. From our simulation results, it becomes clear that the
kinetic theory of granular flows still holds for slightly cohesive granular system.



114 ‖ Test of kinetic theory of granular ows

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

10
20
30
40
50
60
70

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

10
20
30
40
50
60
70

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

10
20
30
40
50
60
70

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

10
20
30
40
50
60
70

Figure 5.11: The excess compressibility from soft-sphere simulations, with random initial
particle positions. Hamaker constant A = 0.0, granular temperature T = 1.0, and the coeffi-
cient of restitution (a) e = 1.0 (top-right); (b) e = 0.95 (top-left); (c) e = 0.90 (bottom-right);
(d) e = 0.80 (bottom-left). Spring stiffness K = 70000. The results are compared with
Eq.(5.39) based on both Carnahan-Starling (solid line) and Ma-Ahmadi (dash line) correla-
tion.
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Figure 5.12: The effect of the cohesive force on the excess compressibility. The coefficient
of restitution e = 1.0, and granular temperature T = 1.0. The Hamaker constant A = 3.0 ×
10−12 (circles) and 3.0 × 10−10 (crosses).

5.6.6 The contribution of cohesion to the excess compressibility

In order to check to what extent the cohesive forces influence the excess compress-
ibility, we calculate the contribution of the cohesive force to the excess compress-
ibility, which we define as

y3 =
1

2Ē

N−1∑
i=1

N∑
j=i+1

F(v)
ij · rij . (5.40)

Here F(v)
ij is the van der Waals force between two spheres. In Figures 5.13 and 5.14,

we show the results obtained in a system with constant granular temperature T =
1.0, the overall excess compressibility of which are shown in Figure 5.12. These
results are plotted as a function of εs, ε2

s, ε3
s, and ε4

s. From Figures 5.13a and 5.14a,
we can see that with an increasing solid fraction the magnitude of y3 experiences
a continuous increase. Also for the same solid fraction εs a larger cohesive force
will lead to a larger contribution y3. For a weak cohesive force (A = 3.0 × 10−12),
as shown in Figure 5.13(c-d), the contribution y3 is essentially a linear function of
ε3

s or ε4
s, which can be well fitted by a function y3 ∼ −C1ε

3
s − C2ε

4
s. If the cohesive

interaction becomes stronger, say A = 3.0× 10−10, the contribution y3 manifests a
linear dependence on the solid fraction εs or ε2

s. Thus for slightly cohesive particles,
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Figure 5.13: The contribution of the cohesive force to the excess compressibility, y3. The
coefficient of restitution e = 1.0, granular temperature T = 1.0 and the Hamaker constant
A = 3.0 × 10−12 in these results. The solid lines in (c) and (d) are linear fittings of the data.

we can write the contribution y3 of cohesion to excess compressibility as

y3 = −
Nc∑
i

Ciε
i
s (5.41)

The coefficients Ci strongly depend on the magnitude of cohesive force.

5.7 Conclusion and discussions

The reliability of the classical two-fluid models for Geldart A particles depends very
much on the accuracy of the correlations for drag coefficient, particle pressure,
and other transport coefficients. Much research has been devoted to obtaining
accurate drag correlations, from either experiments or direct numerical simula-
tions [27]. For particle pressure and other transport coefficients, however, results
are few and far between. It is becoming more popular nowadays to use the con-
stitutive closures based on kinetic theory of granular flows for a continuous rep-
resentation for the particle phase. It is still not clear whether the kinetic theory
of granular flows, which was originally developed for cohesiveless particles, can
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be applied to slightly cohesive systems (such as Geldart A particles). It is also not
obvious to what extent the kinetic theory of granular flows can be used for dense
granular systems.

In this chapter we use a soft-sphere discrete particle model to test the kinetic
theory, with an emphasis on the excess compressibility as it is the key quantity in
KTGF for calculating the particle pressure and other transport coefficients. How-
ever, the excess compressibility should be obtained from the equilibrium state.
Due to the dissipative nature of particle-particle collision, it is not possible for a
granular system to stay at equilibrium without any other external energy sources.
Therefore it is essential to find some manners that can be used to continuously
”heat” the granular system. On the other hand, however, the dissipation will lead
to form dense regimes. In these dense regimes the particles frequently collide with
others and continuously lose kinetic energy, which eventually leads to a very nar-
row velocity distribution. This clustering phenomenon is a typical feature of gran-
ular systems. A simple rescaling procedure is not sufficient to keep the system run-
ning for a long time in an equilibrium state. In the rescaling procedure, the fast par-
ticles will gain more energy while the slower particles will gain less energy. Since
the particles in the dense regimes normally have a lower velocity, they will grad-
ually slow down, which eventually leads to an inhomogeneous situation. In this
case, it is not possible to get a steady value of excess compressibility. Therefore it
is necessary to use another ”heating” manner: the random accelerating approach.
By accelerating each particle with a random acceleration, the granular system is
found to stay in the equilibrium state. However, it is not as computationally effi-
cient as the rescaling procedure. So for dense systems with a solid fraction higher
than 0.45, we use the random accelerating procedure. The rescaling procedure can
be efficiently used in dilute systems.

Clearly, the equation of state given by Eq.(5.39) can be justified for a coefficient
of restitution e ∼ 1.0, however, for high solid fraction, better prediction can be
obtained if the Ma-Ahmadi correlation is taken as the radial distribution function.

For slightly cohesive particles, only a very small deviation has been found from
Eq.(5.39), which suggests that with the Hamaker constants tested in the range used
in this research the cohesion only has a weak influence on the excess compress-
ibility. However, it should be noted that the quantification of the cohesive force is
not straightforward, since there is no reference force (such as gravitational force)
in these systems. We consider these systems as slightly cohesive since the ratio
of the cohesive potential and the average kinetic energy per particle is small. It is
expected that in the presence of a strong cohesive force, particles will form compli-
cated agglomerates. In this case, an equilibrium state may not exist, for which the
validity of kinetic theory of granular flows is questionable. It is extremely difficult
to directly measure the cohesive forces between Geldart A particles as these forces
strongly depend on the surface properties.

Basically a correction of the KTGF can be made by using a modified excess com-
pressibility that accounts for the effects of cohesion between particles. The excess
compressibility due to cohesion, y3 depend on the magnitude of the cohesive force
and solids volume fractions. For a weak cohesive force (A = 3.0× 10−10), y3 can be
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Figure 5.14: The same as in Figure 5.13, but the Hamaker constant A = 3.0 × 10−10. The
solid lines in (a) and (b) are linear fittings of the data.
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well represented by y3 ∼ −C1ε
3
s−C2ε

4
s. For a strong cohesive force tested as well in

this study, y3 ∼ −C3εs − C4ε
2
s.
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6
The Two-fluid Modeling of Geldart A Particles in

Gas-fluidized Beds

ABSTRACT

In this chapter we investigate the effect of cohesion and drag models on the bed hy-
drodynamics of Geldart A particles based on the two-fluid model. For a high gas
velocity U0 = 0.03 m/s, we found a transition from the homogeneous fluidization
to bubbling fluidization with an increase of the coefficient C1, which is used to ac-
count for the contribution of cohesion to the excess compressibility. Thus cohesion
can play a role in the bed expansion of Geldart A particles. However, in order to get
a better prediction of bed expansion, the influence of the drag models should be con-
sidered as well. We test the commonly-used drag model which is given by Wen and
Yu with an exponent n = 4.65. It has been found at low gas velocity, this drag model
gives under-prediction of the bed expansion. Alternatively, we used a large exponent
n = 9.6 reported in experimental studies of gas-fluidization, which was shown to
given a better prediction of the bed expansion. These findings suggest that at low gas
velocity, a scale-down of the commonly-used drag model is required. On the other
hand, however, a scale-up of the commonly-used drag model is necessary at high gas
velocity, for example U0 = 0.2 m/s. Therefore a simple scaling-up or -down of the
drag force cannot be generally adopted. A detailed study of drag model for Geldart A
particles is definitely required.
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6.1 Introduction

Computational Fluid Dynamics (CFD) has proved to be a powerful tool in almost
every branch of single-phase flows, from aerospace propulsion to weather predic-
tion. The applications of CFD in dispersed multi-phase flows, however, are still un-
der development. First, due to the great variation of the properties of the dispersed
phase, the establishment of a general form of the governing equations is difficult;
second, a good coupling technique is necessary to fully include the interactions
between the carrying phase and dispersed phase; last and most importantly, suit-
able closure laws for closing the set of governing equations for dispersed phase
are required. A typical feature of these closure is that they should represent the
average effect of detailed microscopic processes as accurately and widely applica-
ble as possible. One of the examples is dense solid-gas two-phase flows, where
the solids are being carried by a gas. Despite the fact that the particle-particle
and particle-gas interactions take place at a scale smaller than the size of parti-
cles, the governing equations of both the solid and gas phase are formulated by
the volume-averaged Navier-Stokes type of equations, which constitutes the so-
called two-fluid model [1]. The closure laws for the gas phase are well established
in single-phase flows, however, the closure laws for the solid phase lack the under-
lying theoretical framework of the gas phase, and have to be estimated. Normally
the solid phase pressure and viscosity are either simply taken as constants or are
derived from the kinetic theory of granular flows [2, 3]. The two-fluid model devel-
oped so far has been successfully applied to the solid-gas two-phase flows in many
different applications [4].

A great challenge in CFD modeling of solid-gas two-phase flows is to obtain
realistic predictions of the fluidization behavior of small particles such as Geldart A
particles [5]. The standard two-fluid models have been used by several researchers
to predict the bubbling fluidization of Geldart group A particles. Ferschneider and
Mege [6] have reported a major overestimation of bed expansion in a bubbling bed
of FCC particles. Bayle et al. [7] obtained the same result in a turbulent bed of FCC
particles. Recently Lettieri et al. [8] used a particle-bed model, originally developed
by Chen et al. [9] to investigate the homogeneous fluidization of Geldart A particles.
It has been demonstrated that a homogeneous expansion can be obtained in this
particle-bed model. However, in this model an artificial particle-phase elasticity
force is required.

McKeen and Pugsley [10] used the two-fluid CFD code MFIX to simulate a freely
bubbling bed of FCC catalyst for U0 = 0.05 ∼ 0.2 m/s and compared the results to
experimental data obtained from ECT measurements. In accordance with the ob-
servations by Ferschneider and Mege [6], McKeen and Pugsley [10] also found that
the standard CFD model greatly over-predicted bed expansion in case the standard
drag closures are used. By using a scale constant of 0.25 to the standard gas-solid
drag laws, they found that their results could well reproduce the experimental re-
sults. They argued that their modification can be attributed to the formation of
clusters with a size smaller than the CFD grid size, leading to an overall smaller
drag force acting in the particle bed. The existence of such small scale clusters have
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not been reported before, certainly not for particles with a size of 75 µm. For this
kind of particles, the van der Waals force will be small and therefore only slightly
cohesive forces will prevail.

In fact, one of the findings of our discrete particle simulations (see chapter 3
and 4) is that the interparticle van der Waals forces will, to some extent, affect the
fluidization behavior of Geldart A particles, however, they are not the dominate fac-
tor with respect to the transition of flow regimes. In Chapter 5 we showed that for
slightly cohesive particles the kinetic theory of granular flows still holds, even for
dense systems, where only a very small correction due to the cohesive forces is re-
quired. However, if the particles form cluster-like structures, the application of the
current version of kinetic theory of granular flows should be seriously questioned
in any case. In other words, it would be unlikely that a simple reduction of only
gas-particle drag, as suggested by McKeen and Pugsley [10], would suffice in that
case.

In this chapter, a two-fluid model based on kinetic theory of granular flows is
used to investigate the fluidization of Geldart A particles, with an emphasis on the
dense homogeneous expansion. The effects of different parameters on the forma-
tion of homogeneous fluidization is discussed.

6.2 The Two-fluid model

6.2.1 Governing equations

In the two-fluid model, both the gas and particulate phase are considered as a con-
tinuous medium. The continuity and momentum equations of the gas phase are
given by [1]:

∂(ερg)
∂t

+ (∇ · ερgu) = 0, (6.1)

and
∂(ερgu)

∂t
+ (∇ · ερguu) = −ε∇p− β(u− v)−∇ · (ετ g) + ερgg, (6.2)

where ε the void fraction, ρg the gas density, u the gas velocity, p the gas pressure,
v the particle phase velocity, τ̄ g the gas phase stress tensor, and g the accelera-
tion due to gravity. The continuity and momentum equations of particle phase are
given by

∂(εsρs)
∂t

+ (∇ · εsρsv) = 0, (6.3)

and

∂(εsρsv)
∂t

+ (∇ · εsρsvv) = −εs∇p + β(u− v)−∇ ps −∇ · (εsτ s) + εsρsg. (6.4)

Note that εs(= 1− ε) is the solid fraction, ρs is the particle density, ps is the particle
phase pressure, and τ̄ s is the particle phase stress tensor. The inter-phase mo-
mentum transfer coefficient β is used to calculate the drag due to the fluid-particle
interaction.
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6.2.2 Constitutive equations

Material density

The gas phase density is related to the temperature and the pressure by the ideal
gas law:

ρg =
Mg

RT
p. (6.5)

For the particle phase a constant density is applied, which depends only on the
material properties of the particles.

Viscous stress tensor

The gas phase viscous stress tensor τ g can be formulated in the following general
form for a Newtonian fluid:

τ̄g = −
[(

νg −
2
3
µg

)
(∇ · u)I + µg((∇u) + (∇u)T )

]
, (6.6)

with I the unit tensor. In Eq.(6.6), νg represents the bulk viscosity of the gas phase,
which is normally set to zero [11], and µg is the gas phase shear viscosity, which is
assumed to be constant, and set equal to 1.8× 10−5 Pa·s.

A similar form is adopted for the viscous stress tensor of the particle phase τ̄ s,
which is given by

τ̄ s = −
[(

νs −
2
3
µs

)
(∇ · v)I + µs((∇v) + (∇v)T )

]
, (6.7)

where νs and µs are respectively the particle phase bulk and shear viscosity. How-
ever, the particle phase viscosities cannot be simply treated as constants. From the
kinetic theory of granular flows it follows that they depend on the granular tem-
perature, coefficient of restitution, local void fraction, and the radial distribution
function.

The inter-phase momentum transfer coefficient

Notwithstanding the great efforts that have been devoted to this topic, a full under-
standing of gas drag acting on a particle in an assembly is still lacking, and for this
reason there is at present no definite consensus on what is the most reliable drag
closure. The closures that can be found in literature can typically be divided into
two classes: 1) empirical or semi-empirical correlation, and 2) based on data from
direct numerical simulation. Typical examples of the first class are the well-known
Ergun [12] and Wen and Yu [13] correlations. They obtained their correlations by
using experimental bed pressure drop data for stationary homogeneous beds. The
drag force expressions were also obtained from the bed expansion measurement
by using Richardson-Zaki type of equation [14]. The second class is typified by the
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micro-scale simulations, such as DNS [15] and Lattice Boltzmann [16, 17]. The di-
rect numerical simulation method can capture the details of the flow around each
particle, and provides an insight into the nature of fluid-solid interaction. One of
the advantages is that properties which can be difficult to accurately control in ex-
periments (such as monodispersity, homogeneity, and so on), are well-defined in
simulations. Moreover, simulations can provide data that is difficult or impossi-
ble to obtain experimentally, for instance the drag force on one particular type of
particle in dense bidisperse mixtures. One of the drawbacks is that DNS can only
deal with hundreds of particles at present; Furthermore, the Reynolds number that
can be studied is typically less than 1000. The use of empirical approaches is much
more common at present, especially in industrial applications.

We next present the most widely used drag correlations. To this end, we first
write interphase momentum transfer coefficient β in the following general form:

β =
3
4
3πµgε

2 dp (u− v) f(ε), (6.8)

where f(ε) is defined as the porosity function. The well-known correlations then
correspond to the following expressions for the porosity function f(ε):

Ergun correlation [12]:

f(ε) =
150(1− ε)

18ε3
+

1.75
18

Rep

ε3
, (6.9)

where Rep is the particle Reynolds number:

Rep =
ερg|u− v|dp

µg
.

Wen-Yu correlation [13]:

f(ε) =
Cd

24
Repε

−4.65. (6.10)

The drag coefficient Cd is a function of the particle Reynolds number and given by
( Rep < 1000):

Cd =
24

Rep
(1 + 0.15Re0.687

p ).

LB drag model For Reynolds number smaller than 1 ( which is typical valid
for Geldart A particles in gas-fluidization suspensions), Hill et al. [16] derived the
following relation, based on lattice Boltzmann data:

f(ε) =
10(1− ε)

ε3
+ 0.7 (6.11)
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Table 6.1: Exponent n for Geldart A particles.
Lettieri, Newton and Gates (2002, Powder Technol.) [19]: gas-fluidization
dp = 71 µm n = 9.6
dp = 57 µm n = 9.0
dp = 49 µm n = 8.2
Massimilla Donsi and Zucchin (1972, Chem. Engng. Sci.) [20]: gas-fluidization
dp = 60 µm n = 7.12
dp = 53 µm n = 6.86
dp = 45 µm n = 6.1
Lewis and Bowerman (1952, Chem. Engng. Prog.) [21]: liquid-fluidization
dp = 86 µm n = 8.3
Whitmore (1957, J. Inst. Fuel) [22]: liquid-sedimentation
dp = 65 µm n = 9.5

for ε < 0.6 and

f(ε) =
1 + 3

√
0.5(1− ε) + (135/64)(1− ε) ln(1− ε) + 17.14(1− ε)
1 + 0.681(1− ε)− 8.48(1− ε)2 + 8.16(1− ε)3

(6.12)

for ε ≥ 0.6.
Note that the Wen-Yu correlation can be rewritten in a more general form:

f(ε) =
Cd

24
Repε

−n. (6.13)

The conventional value of the exponent n = 4.56 was originally obtained by
Richardson and Zaki [14]. For gas-solid systems, the exponent n is extremely scat-
tered [18], however. For Geldart A particles, different values of the exponent n are
shown in Table 6.1. These values deviate obviously from the most-commonly used
value, 4.65.

Kinetic theory of granular flows

The kinetic theory of granular flows describes the dependence of the rheologic
properties of the fluidized particles on local particle concentration and the fluc-
tuating motion of the particles owing to particle-particle collisions [23]. The key
quantity used in the kinetic theory of granular flows is the granular temperature,
which is analogous to the thermal temperature of the classical kinetic theory of a
molecular gas. The granular temperature T is defined as the square velocity fluctu-
ation of particles [24]:

T =< v2 > − < v >2 (6.14)

The variation of the velocity fluctuation of particles is described with a separate
conservation equation, the so-called granular temperature equation:

3
2

[
∂(εs ρs T )

∂, t
+∇ · (εs ρs T v)

]
= −(psĪ+εs τ̄ s) : ∇v−∇· (εs qs)−3β T −γ (6.15)
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The particle phase pressure ps is given by [23]

ps = p(0)
s (1 + y), (6.16)

with
p(0)

s = εsρs T,

and the excess compressibility [25]

y = 2(1 + e)εs χ.

where χ is the radial distribution function. In the kinetic theory of granular flows,
the bulk viscosity νs is given by

νs =
5
3
µ0. (6.17)

while the shear viscosity µs equals

µs = 4.064µ0εs(
1
y

+
4
5

+ 0.761y). (6.18)

The fluctuating kinetic energy flux qs is assumed to obey the Fourier’s law:

qs = −κs∇T, (6.19)

where the thermal conductivity κs is

κs = 4.10052κ0εs(
1
y

+
6
5

+ 0.748y). (6.20)

In these expressions,

µ0 =
5

64r2
p

√
kBmT

π
, (6.21)

and

κ0 =
75mkB

256r2
p

√
mkBT

π
. (6.22)

There is a term γ to account for the dissipation of fluctuating kinetic energy due
to inelastic particle-particle collisions in Eq.(6.15), and is given by

γ = 3(1− e2)ε2
sρsχT

[
4
dp

√
T

π
− (∇ · v)

]
. (6.23)

The radial distribution function χ is presented by Ma and Ahmadi [26]:

χ0(εs) =
1 + 2.5εs + 4.5904ε2

s + 4.515439ε3
s[

1− (εs/εmax
s )3

]0.67802 (6.24)
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Table 6.2: Simulation conditions.
Parameters value
Gas shear viscosity 1.8×10−5 Pa·s
Gas temperature 293 K
Gas pressure 1.01×105 Pa
Gas constant, R 8.314 J/(mol·K)
Coefficient of restitution, e 0.97
CFD cells 30×45×
Size of the cell 5×5 mm2

CFD time step, 1.0×10−4 s
Particle diameter 75 µm
Particle density 1500 kg/m3

6.3 Simulation conditions

In this work, we will use a 2D model. Figure 6.1 shows the scheme of the computa-
tional mesh and boundary conditions imposed.

The simulation conditions are specified in Table 6.2. The drag model used in
this work is based on Eq.(6.13), where the exponent n will be specified in the indi-
vidual simulations.

The gas flow enters at the bottom through a porous distributor. The initial void
volume fraction in each fluid cell is given an average value of 0.4, and with a ran-
dom variation of ±5%. Also for the boundary condition at the bottom we use an
uniform gas-velocity with a superimposed random component (10%), following
Goldschmidt et al. [27].

6.4 Simulation results

The particles used in the simulations are mono-disperse, with a diameter of 75 µm
and a density ρp = 1500 kg/m3. This type of particle has been experimentally inves-
tigated by Geldart [5]. Based on their experiments, a minimum fluidization velocity
Umf = 0.22 cm/s and a minimum bubbling velocity Umb = 0.68 cm/s were ob-
tained. The mean void fraction ε at the minimum bubbling point is around 0.635,
which corresponds to a bed expansion of 1.31H0 (H0 is the initial packed bed height
with a mean porosity of 0.4).
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Figure 6.1: The fluid cells and boundary conditions employed in the two-fluid models.

6.4.1 Effect of cohesion

As found in the previous chapter, for slightly cohesive particles, a correction for the
excess compressibility can be made as following:

y3 = −
Nc∑
i

Ciε
i
s. (6.25)

The coefficient Ci depends on the magnitude of the cohesive force. We argue that
such a modification, although quite simple, can be used to investigate the influ-
ence of the cohesion on the bed hydrodynamics. For simplicity, we only consider
the first term in Eq.(6.25), which is given by

y3 = −C1εs. (6.26)

So the new overall excess compressibility is

y = 2(1 + e)εsχ0 − C1εs.. (6.27)

which is subsequently used in the expressions for the viscosity and pressure from
the kinetic theory of granular flows. We have carried out several sets of simulations
with different coefficients C1.

In Figures 6.2 we show the simulation results for a superficial gas velocity
U0 = 0.9 cm/s, which is approximately 1.29Umb determined by Geldart [5] in his
experiments. Three different coefficients C1 are used, namely 0.0, 2.0, 10.0. From
Figure 6.2, an homogeneous expansion is observed, with an expansion of 12.5% of
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Figure 6.2: Instantaneous voidage profiles of Geldart A particles. The superficial gas velocity
U0 is set to 0.009 m/s. At the far right is the initial bed used for the simulation. The values for
the coefficient C1 are, from the second to the right to the left, 0.0, 2.0, and 10.0, respectively.
The exponent n used in the simulations is 4.65. The results are taken at t = 5 s.

the initial bed regardless of the magnitude of the coefficients C1. Compared to Gel-
dart’s experiments [5], at this point the fluidized bed should bubble, which means
that a higher Umb will be obtained from our model. Furthermore, the bed expan-
sion is under-estimated since an expansion of 31% has been found for this type of
particles at the minimum bubbling point [5].

We also carried out a set of simulations with a higher superficial gas velocity
U0 = 0.03 m/s, as shown in Figure 6.3. The bed should display a bubbling fluidiza-
tion at this gas velocity. As can be seen, without any cohesive interaction (C1 = 0.0)
taken into account, the bed still shows a homogeneous expansion of 50% of the ini-
tial bed. However, if we increase the coefficient C1 to 2.0, the hydrodynamics of the
bed becomes quite different. The bed starts to bubble and a bubbling fluidization
typical of Geldart A particles can be found. An averaged bed height for this bub-
bling bed is ∼2.0H0. If an even higher coefficient C1 is used (C1 = 10.0), the bed
still remains in the bubbling regime but a significant decrease of the bed height is
observed, which amounts to 1.75H0. It can be argued that with a suitable cohe-
sion the bed can transform from a homogeneous regime to a bubbling regime. But
an extremely high coefficient C1 may also lead to a more compact bubbling bed,
which is probably due to the strong cohesive interaction.

Clearly, by solely accounting for the cohesion between particles, a realistic bed
hydrodynamics cannot be obtained at present. For a lower gas velocity U0 = 0.9
cm/s, an under-estimation of the bed expansion is found. As shown in Table 6.1, for
a gas-solid system of Geldart A particles, a large exponent in the voidage dependent
part of the drag force is always found. A large exponent means that a high drag force
will be calculated for a single particle in an assembly. Thus if a large exponent n is
used, we expect a higher bed expansion at a lower gas velocity.
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Figure 6.3: Instantaneous voidage profiles of Geldart A particles. The superficial gas velocity
U0 is set to 0.03 m/s. At the far right is the initial bed used for the simulation. The coefficient
C1 are, from the second to the right to the left, 0.0, 2.0, and 10.0 respectively. The exponent
n used in the simulations is 4.65. The results are taken at t = 5 s.

The cohesion clearly has an impact on the bed expansion as shown in Figure
6.3. However, at present we do not know the exact value of the coefficient C1 for a
particular Geldart A particle system. This clearly limits the predictive capability of
this model, and an accurate estimate from the DPM simulations is highly desirable.
The problem in this is that the value of the Hamaker constant A is not ”a priori”
known.

It should also be stressed that in this study the cohesive effect has been consid-
ered via a very simple approach. A detailed study, in which not only the particle
pressure, but other transport coefficients such as particle viscosity are evaluated
and carefully tested, is highly desired.

6.4.2 Effect of drag model

Clearly, to product the bed expansion accurately, the influence of not only the co-
hesion but also the drag models should be considered. Three different models are
used: (1) the general form of drag force given by Eq.(6.13) with an exponent n = 9.6,
which was determined from experiments by Lettieri et al. [19]. (2) the same as (1)
but with an standard exponent n = 4.65; (3) the lattice Boltzmann drag model given
by Eqs.(6.11) and (6.12).

Low gas velocity

In Figure 6.4 we show the results for a gas velocity U0 = 0.009 m/s. For a large expo-
nent (n = 9.6) a higher bed expansion, around 31% of the initial bed height, can be
observed. Bubbling behavior is found, which is quite different from the observa-
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Figure 6.4: Instantaneous voidage profiles of Geldart A particles. The superficial gas velocity
U0 is set to 0.009 m/s. At the far right is the initial bed used for the simulation. The exponents
n are 4.65 (middle) and 9.6 (left). No cohesion is considered here. The results are taken at
t = 5 s.

tion with the standard exponent n = 4.65. The latter still displays a homogeneous
expansion.

Clearly, the commonly-used exponent n = 4.56 cannot be used to predict a real-
istic bed expansion dynamics of Geldart A particles at a low gas velocity, say around
Umb. By using a large exponent (n =9.6), which was determined by gas-fluidization
of Geldart A particles, we can get a bed expansion much closer to the experimental
results [5]. Basically a larger exponent n in Eq.(6.13) will lead to a higher drag at the
same gas velocity. It can thus be argued that at the lowe gas velocities the drag force
is under-estimated by the commonly-used drag models. This is also evidenced by
the large exponents n generally obtained in the fluidization of Geldart A particles
(see Table 6.1).

High gas velocity

It has been reported by several researchers [6, 7, 10] that an over-estimated bed ex-
pansion was found at a high gas velocity (∼ 0.2 m/s). We also carried out several
simulations for a high gas velocity, U0 = 0.2 m/s. We still use the drag model given
by Eq.(6.13) with an exponent n = 4.65. The simulation domain, however, is en-
larged so that a high bed expansion can be accommodated. The computational
domain is composed of 30× 70 cells, and the size of each cell still remains as 5× 5
mm2. With such a high gas velocity the bed in fact is in the turbulent fluidiza-
tion regime. In Figure 6.5, we show the results obtained at different points in time
when the bed reaches a dynamical equilibrium. Clearly the particle phase displays
a turbulence-like flow pattern. Also an over-estimation of bed height is found in
the simulations, which is around 100% of the initial bed height.
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Figure 6.5: The bed expansion dynamics of Geldart A particles from the two-fluid model.
The superficial gas velocity U0 is set to 0.2 m/s. The exponent n is 4.65. No cohesion is
considered here. The results are, from the right to left, taken at t = 9.6, 9.7, 9.8, 9.9 and 10.0
s.

Since the LB drag model given by Eqs.(6.11) and (6.12) is obtained essentially at
low Reynolds number, we also carried out a set of simulations for this drag model.
The results are shown in Figure 6.6. As can be seen, no big differences can be ob-
served compared to the results from the drag model given by Eq.(6.13) with an ex-
ponent n = 4.65.

A similar simulation was also carried out by McKeen and Pugsley [10]. They
also found an over-estimation of the bed height, compared to their experimental
results. They argued that a factor should be used to scale down the drag force in
this regime, in order to obtain a better aggreement with the experiments. In Fig-
ure 6.7 we show the results of our simulations with a drag force (n = 4.65) scaled
down by a factor 0.15. A significantly decrease of the bed height is found, which is
around 16% of the initial bed height. This value is quite close to that observed in
the experiments by McKeen and Pugsley [10].

6.5 Discussion and conclusions

In this chapter we have investigated the effect of cohesion and drag models on the
bed hydrodynamics of Geldart A particles. For a low gas velocity U0 = 0.009 m/s,
the effect of coefficient C1, which is introduced to account for the presence of cohe-
sion, on the bed expansion is a quite small. For a higher gas velocity U0 = 0.03 m/s,
we found a transition from the homogeneous fluidization to bubbling fluidization
with an increase of the coefficient C1. It is thus argued that the cohesion plays a
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Figure 6.6: The same as in Figure 6.5, but here used is the LB drag model.

Figure 6.7: The same as in Figure 6.5, but the drag force is scaled by a factor of 0.15.
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role in the bed expansion of Geldart A particles. However, it is difficult at present
to derive an exact value of the coefficient C1 for a particular Geldart A particle sys-
tem. An accurate procedure to measure the effect of cohesion on viscosity and
pressure in DPM model is highly required. Furthermore, the consideration of co-
hesion, although important, is still not sufficient to obtain a realistic bed expansion
dynamics.

In order to arrive at a better prediction of the bed expansion, the influence of the
drag models should be considered as well. We have tested the commonly-used drag
model which is given by Eq.(6.13) with an exponent n = 4.65. It has been found that
at the low gas velocity, this drag model gives under-prediction of the bed expansion.
Alternatively, we used a large exponent n = 9.6 as well, which was shown to given
a better prediction of the bed expansion. Essentially, a large exponent means a
higher drag force acting on a single particle in an assembly. This suggests that at a
low gas velocity, a scale up of the standard drag model is required.

On the other hand, however, a scale down of the standard drag model is nec-
essary at high gas velocity, for example at U0 = 0.2 m/s. This was also found in
previous studies [6, 7, 10]. Clearly, the effect of the drag model on the bed expan-
sion of Geldart A particles is far more complicated. A simple scaling-up or -down
cannot be generally adopted. A detailed study on gas-particle drag for Geldart A
particles is definitely required.

References

[1] Kuipers J.A.M., van Duin K.J., van Beckum F.P.H., and van Swaaij W.P.M., 1992.
A numerical model of gas-fluidized beds. Chem. Engng. Sci., 47: 1913.

[2] Patil D.J., van Sint Annaland M., and Kuipers J.A.M., 2005. Critical comparison
of hydrodynamic models for gas-solid fluidized beds-Part I : bubbling gas-solid
fluidized beds operated with a jet. Chem. Engng. Sci., 60: 57.

[3] Patil D.J., van Sint Annaland M., and Kuipers J.A.M., 2005. Critical comparison
of hydrodynamic models for gas-solid fluidized beds-Part II: freely bubbling gas-
solid fluidized beds. Chem. Engng. Sci., 60: 73.

[4] Kuipers J.A.M., and van Swaaij W.P.M., 1998. Computational fluid dynamics ap-
plied to chemical reaction engineering. Adv. Chem. Engng., 24: 227.

[5] D. Geldart, 1973. Types of gas fluidization. Powder Technol., 7: 285.

[6] Ferschneider G., and Mege P., 1996. Eulerian simulation of dense phase flu-
idized bed. Revue de l

′
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Summary

The most widespread industrial application of dense gas-solid flows is encoun-
tered in the domain of gas-fluidized beds. If operated with well-matched gas and
particle parameters, fluidized beds can provide many advantages such as uniform
temperature distribution, high mass transfer rates, continuous operation, and rela-
tive simplicity in geometric configuration. For this reason, gas-fluidized beds have
been widely applied to petroleum, metallurgical, chemical, energy, environmental,
and food industries in the past decades. However, the understanding of the hy-
drodynamics of the complex gas-solid two-phase flows in gas-fluidized beds is not
complete. The design and scale up of a fluidized bed reactor still depends mostly
on the measurement techniques and preliminary tests on pilot-scale model reac-
tor. This is a very expensive and time-consuming activity.

The development of the computational fluid dynamics (CFD) techniques in re-
cent years provides a valuable tool in the design and scale up of fluidized bed reac-
tors. However, the establishment of a general modeling approach, if not impossi-
ble, is quite difficult, since for the varying operation conditions a number of differ-
ent fluidization regimes can be encountered. A great challenge in CFD modeling
of gas-solid two-phase flows is to obtain realistic predictions of the fluidization be-
havior of small particles (< 100 µm) such as group A particles according to Geldart’s
classification. This type of particles are found to display a unique homogeneous ex-
pansion in gas-fluidized bed reactors within a certain range of gas velocities, where
the solid fraction is normally very high (in the range of 0.5∼0.6). Despite many de-
tailed phenomenological investigations in the past years, a realistic prediction of
fluidization behavior of Geldart A powders is still difficult with current CFD mod-
els.

This work aims at studying the fluidization behavior of Geldart A particles with
a multi-level modeling approach. At the microscopic-scale the most fundamen-
tal lattice Boltzmann model will be used to investigate the gas-particle interac-
tion. The starting point of the work reported in this study, however, is the meso-
scale discrete particle model. This model allows one to study the effect of the
particle-particle interactions on the fluidization behavior in great detail. By tak-
ing a volume-averaged gas flow field into account, the effects of the gas flow on
the fluidization of Geldart A particles can also be investigated. At the macroscopic-
scale the two-fluid model is used, in which the constitutive closures are developed
from the kinetic theory of granular flows. The information obtained from the dis-
crete particle model can be used to improve this two-fluid model, which offers a
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potential tool to support the design and scale-up of engineering scale equipment.

Discrete particle modeling

A 2D simulation study revealed some typical features of fluidization behavior of
Geldart A particles including the gross circulation of particles in the absence of
bubbles, the formation of cavities and channels in homogeneous fluidization, and
fast bubbles. The structure of the forces acting on the particles is also studied,
and the homogeneous fluidization regime is shown to be a quasi-equilibrium state
where a force balance only exists at the macroscopic-level but not at the level of
individual particles. The drag forces and van der Waals forces are two important
sources of the local force fluctuations, and thus of the velocity fluctuation of the
particles.

An analysis of the velocity fluctuation of particles has then been carried out. It
is shown that an anisotropy of the velocity fluctuation of particles exists in both
the homogeneous fluidization regime and the bubbling regime. At least three ba-
sic interactions, i.e. the fluid-particle interaction, the particle-particle collisions
(and the particle-wall collisions), and the interparticle van der Waals forces, can be
identified as the main sources of velocity fluctuations of particles. The homoge-
neous fluidization is actually a transition phase resulting from the competition of
these three interactions. In the bubbling regime, however, the effect of the interpar-
ticle van der Waals forces vanishes and the fluid-particle interaction becomes the
dominant factor determining the fluidization behavior of Geldart A particles. Addi-
tionally, we find that the velocity fluctuation of the particles obeys an exponential
function of the squared superficial gas velocity in the homogeneous fluidization
regime, and not a linear function as found by Cody et al. (Powder Technol. 1996).

The comparison of the particulate pressure obtained from our simulations with
the theoretical prediction by Koch and Sangani (J. Fluid Mech., 1999) suggests that
the difference of particulate pressure is more pronounced in the homogeneous flu-
idization regime than that in the bubbling regime. This further indicates that the
fluid-particle interaction is a dominant factor responsible for the bubbling regime
but not for the homogeneous fluidization. Our results for the bubbling regime are
also found to be in a good agreement with the experimental results by Rahman and
Campbell (J. Fluid Mech., 2003).

The simulations have also been carried out in a 3D fluidized bed, by which we
study the effects of the gas and particle properties on the fluidization behavior of
Geldart A particles. We first find that the generation of the overshoot of the pres-
sure drop near the minimum fluidization point is affected by both the particle-wall
friction and the interparticle van der Waals forces, which confirm the experimental
results by Loezos et al. (Powder Technol. 2002) and Rietema et al. (Chem. Engng.
Sci., 1990).

In all the cases we studied in this research, the predicted Umf was in a good
agreement with the correlation by Abrahamsen and Geldart (Powder Technol.,
1980). The minimum bubbling velocity Umb, in general, shows a qualitative agree-
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ment with this correlation. The interparticle van der Waals force is found to delay
the onset of bubbles and extend the interval of homogeneous fluidization. The
higher the granular Bond number, the higher Umb, until a transition to Geldart C
behavior is encountered, where no Umb can be discerned. Also the particle density
and gas density are shown to have a weak effect on Umb. For heavy particles, the
window of homogeneous fluidization is decreased mainly due to the increase in
Umf . By contrast, it has been found that the particle size has a strong effect on Umb.
The predicted Umb for different particle diameter agrees with the correlation except
for fine particles with a diameter dp < 40µm. This may be due to the fact that we
turned off the interparticle van der Waals forces in these particular simulations. It
can be argued that for larger particles with a diameter dp > 40µm the interparticle
van der Waals forces may have a negligible effect on the formation of homogeneous
fluidization. For fine particles, however, a proper incorporation of interparticle van
der Waals forces is highly desired. Finally, the effect of the gas viscosity has been
examined. We found that the minimum bubbling velocities from our simulations
for different gas viscosity show a systematic deviation from the empirical correla-
tion by Abrahamsen and Geldart. In particular, we found that with an increasing
gas shear viscosity the Umb experiences a minimum point near 2.0 × 10−5Pa · s,
while in the correlation by Abrahamsen and Geldart the minimum bubbling veloc-
ity decreases monotonously for increasing µg. Interestingly, if we fit the data up to
2.0×10−5Pa· s, a slope of -0.267 has been obtained, which is not very different from
the value -0.347 in the correlation by Abrahamsen and Geldart.

Kinetic theory of granular flows

A soft-sphere discrete particle model is used to test the kinetic theory of granular
flows (KTGF), with emphasis on the prediction of excess compressibility as it is the
key quantity in KTGF for calculating the particle pressure and other transport co-
efficients. To this end, it is first essential to find a suitable method to continuously
“heat” the granular system, since the dissipation in collisions will have the effect
that continuously loose their kinetic energy. A simple rescaling procedure is found
to be insufficient to keep the system running for a long time in an equilibrium state
in particular for dense systems. This is because in this procedure, the fast particles
will gain more energy while the slower particles will gain less energy. By accel-
erating each particle with a random acceleration, the granular system is found to
stay in the equilibrium state. However, it is not as computationally efficient as the
rescaling procedure. A random accelerating procedure is thus used for higher solid
fractions and rescaling procedure is only used for dilute systems, where the system
is found to stay in the equilibrium state for an appreciably long time.

For slightly cohesive particles, only a very small deviation has been found from
the classical kinetic theory of granular flows, which suggests that with the Hamaker
constants tested in the range used in this research the cohesion only has a weak in-
fluence on the excess compressibility. It is expected that in the presence of a strong
cohesive force, particles will form complicated agglomerates. In this case, an equi-
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librium state may not exist, so that the validity of kinetic theory of granular flows
is questionable. However, the quantification of the cohesive force is not straight-
forward, since there is no reference force (such as gravitational force) in these sys-
tems. Note also that the absolute value of the force is not precisely known, since
it is extremely difficult to directly measure the cohesive forces between Geldart A
particles, and a theoretical estimate based on the (bulk) particle properties is also
unreliable since these forces strongly depend on the surface properties.

A correction of the KTGF is made by using a modified excess compressibility
that accounts for the effects of cohesion between particles. The excess compress-
ibility due to cohesion, y3, depends on the magnitude of the cohesive force and the
solids volume fractions. For a weak cohesive force, y3 can be well represented by
y3 = −C1ε

3
s − C2ε

4
s, while for a strong cohesive force tested as well in this study,

y3 = −C3εs − C4ε
2
s.

Two-fluid model

We have investigated the effect of cohesion and drag models on the bed hydrody-
namics of Geldart A particles based on the two-fluid model. For a high gas velocity
U0 = 0.03 m/s, we found a transition from the homogeneous fluidization to bub-
bling fluidization with an increase of the coefficient C1, which is used to account
for the contribution of cohesion to the excess compressibility. Thus cohesion can
play a role in the bed expansion hydrodynamics of Geldart A particles. However,
in order to get a better prediction of bed expansion, the influence of the drag mod-
els should be considered as well. We test the commonly-used drag model which is
given by the Wen and Yu correlation with an exponent n = 4.65. It has been found
at low gas velocity, that this drag model gives under-prediction of the bed expan-
sion. Alternatively, we used a large exponent n = 9.6 reported in experimental
gas-fluidization studies, which was shown to given a better prediction of the bed
expansion. These findings suggest that for a low gas velocity, a scale-down of the
commonly-used drag model is required. On the other hand, however, a scale-up
of the commonly-used drag model is necessary for high gas velocity, for example
U0 = 0.2 m/s. Therefore a simple “ad-hoc” scaling-up or -down of the drag force,
which has been suggested by some researchers, cannot be generally adopted. A
more detailed study of drag model for Geldart A particles is also desired.



Samenvatting

De meest voorkomende industriële toepassing van verdichte gas-deeltjes stro-
mingen zijn gas-gefluı̈diseerde bedden. Als de juiste waarden voor gas en deelt-
jes parameters worden gekozen, dan hebben gefluı̈diseerde bedden een aan-
tal waardevolle eigenschappen, zoals een uniforme temperatuurverdeling, hoge
massa-overdrachtssnelheden, en eenvoudige continue operatie. Vanwege deze
eigenschappen worden gas-gefluı̈diseerde bedden veel toegepast in de petroleum,
metallurgische, en chemische industrieën, alswel de levensmiddelen en milieu
gerelateerde industrieën. Echter, ons begrip van de complexe gas-vast stromingen
in gas-gefluı̈diseerde bedden is verre van compleet. Het gevolg is dat het ontwer-
pen en opschalen van gefluı̈diseerde bed reactoren veelal moet gebeuren aan de
hand van schaalmodel reactoren en uitgebreide experimentele metingen, hetgeen
een langdurig en dus ook kostbaar proces is.

De recente ontwikkeling van “computational fluid dynamics” (CFD) technieken
biedt een belangrijk hulpmiddel voor het ontwerpen en opschalen van gefluı̈di-
seerde bed reactoren. Echter, aangezien de stromingsregimes zeer verschillend
kunnen zijn, is het erg moeilijk om een algemeen toepasbaar numeriek model te
ontwikkelen, dat alle soorten van fluı̈disatie goed kan beschrijven. Een van de
grote uitdagingen voor CFD modellen is het om het juiste fluı̈disatie gedrag te
voorspellen van zeer klein deeltjes (< 100 µm), zoals de A deeltjes in de Geldart
classificatie. Uniek voor dit type deeltjes is dat ze bij bepaalde gassnelheden een
fluı̈disatieregime van homogene expansie vertonen, waar de deeltjesdichtheid zeer
hoog is (50-60 volume procent). Het is tot nu toe nog niet gelukt om deze homo-
gene expansie met CFD modellen nauwkeurig te beschrijven, ondanks het feit dat
er in de afgelopen jaren enorm veel onderzoek naar verricht is.

Het onderzoek dat beschreven is in dit proefschrift houdt zich bezig met het
bestuderen van het fluı̈disatie gedrag van Geldart A deeltjes met behulp van een
numeriek model dat gas-vast systemen beschrijft op een meer gedetailleerd niveau
dan de traditionele CFD modellen: het discrete deeltjes model. De vaste fase is hier
niet continu, maar wordt gemodelleerd met bolvormige deeltjes, wat het mogelijk
maakt om de invloed van deeltjes-deeltjes interacties op het fluı̈disatie gedrag te
bestuderen. De gasfase wordt beschreven met CFD modellen, waarbij er een “two-
way” koppeling is tussen de dynamica van de beide fasen. Dit maakt het mogelijk
om ook het effect van de gas dynamica op het fluı̈disatiegedrag te bestuderen. Be-
halve het bestuderen van de invloed van de diverse interacties op de fluı̈disatie,
wordt het discrete deeltjes model ook gebruikt om de effectieve deeltjes druk te



144 ‖ Samenvatting

bepalen, wat een belangrijke parameter is de hogere schaal CFD modellen. Dit
geeft dus een directe mogelijkheid om de CFD modellen te verbeteren, en op deze
manier kan het discrete deeltjes model een belangrijke bijdrage leveren aan de on-
twikkeling en opschaling van chemische reactoren. In de volgende secties beschri-
jven we de belangrijkste uitkomsten van het onderzoek.

Discrete deeltjes modellering

De 2D discrete deeltjes simulatie vertoonde het typische fluı̈disatie gedrag van Gel-
dart A deeltjes, zoals het op grote schaal circuleren van deeltjes in afwezigheid van
bellen, en de vorming van holtes en kanalen bij homogene fluı̈disatie. De struc-
tuur van de krachten op de deeltjes is ook bestudeerd, waaruit bleek dat het regime
van homogene fluı̈disatie een quasi-evenwichts toestand is, waar een balans van
krachten bestaat op het macroscopische niveau, maar niet op het niveau van
de individuele deeltjes. De snelheidsfluctuaties van de deeltjes blijkt anisotroop
te zijn in zowel het homogene fluı̈disatie regime als in het heterogene (“bub-
bling”) regime. Er kunnen 3 krachten bijdragen aan de snelheidsfluctuaties: de
deeltjes-deeltjes krachten, de gas-deeltjes krachten, en de cohesieve van der Waals
krachten. De homogene fluı̈disatie blijkt een overgangsfase te zijn welke het gevolg
is van de competitie van de drie krachten. Voor het “bubbling” regime blijkt dat
de van der Waals krachten relatief onbelangrijk worden: het zijn dan voornamelijk
de gas-deeltjes krachten die het fluı̈disatie gedrag bepalen. Ook blijkt dat in het
regime van homogene fluı̈disatie de snelheidsfluctuatie van de deeltjes een expo-
nentiële functie van de kwadratische superficiële snelheid te zijn, waar Cody et al.
(Powder Techn. 1996) een lineair verband vonden. Een vergelijking van de deelt-
jesdruk in de simulatie met de theoretische voorspelling van Koch en Sangani (J.
Fluid Mech., 1999) suggereert dat het verschil extremer is in het regime van homo-
gene fluı̈disatie, vergeleken met het “bubbling” regime. Dit is een andere belan-
grijke aanwijzing dat de vloeistof-deeltjes interacties de dominante factor zijn in
het “bubbling” regime, maar niet in het regime van homogene fluı̈disatie. Onze re-
sultaten voor het “bubbling” regime blijken in goede overeenstemming te zijn met
de experimentele resultaten van Rahman en Campbell (J. Fluid Mech., 2003).

Hiernaast zijn er ook simulaties uitgevoerd voor 3-D gefluı̈diseerde bedden, met
het doel om de effecten van gas en deeltjeseigenschappen op het fluı̈disatie gedrag
van A-deeltjes te bestuderen. Allereerst vinden we dat de drukval doorschiet vlakbij
het punt van minimum fluı̈disatie, hetgeen ook gemeld word in de experimenten
van Loezos et al. (Powder Technol. 2002) and Rietema et al. (Chem. Engng. Sci.,
1990). Ook voor de waarde van Umf vonden we in alle gevallen een goede overeen-
stemming tussen de simulatie resultaten en de correlatie van Abrahamsen en Gel-
dart (Powder Technol., 1980) welke gebaseerd is op experimentele data. Voor de
minimum “bubbling” snelheid Umb vonden we een kwalitatieve overeenstemming
tussen de simulatie data en de Abrahamsen en Geldart correlatie. De cohesive van
der Waals krachten blijken Umb te verhogen, en maken dus het interval van ho-
mogene fluı̈disatie groter. Hoe hoger het granulaire bindingsgetal, hoe hoger Umb,
totdat er een overgang naar C-deeltjes bereikt is, en geen Umb meer kan worden
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waargenomen. Verder blijkt, dat zowel de gas- en deeltjesdichtheid nauwelijks
invloed hebben op Umb. Voor zware deeltjes wordt het interval van homogene
fluı̈disatie echter wel kleiner omdat Umf toeneemt. De deeltjesgrootte blijkt wel
een grote invloed op Umb te hebben. De simulatiewaarden voor Umb bij verschil-
lende diameters komen goed overeen met de correlatie, behalve voor hele fijne
deeltjes met een diameter dp < 40 µm. Dit zou verklaard kunnen worden door het
feit dat in deze simulaties de cohesive krachten uitgeschakeld zijn. Voor relatief
grote deeltjes (dp > 40 µm) is te verwachten dat deze krachten naar verhouding
weinig effect hebben, maar voor kleinere deeltjes zouden ze zeker meegenomen
moeten worden. Tenslotte is ook nog onderzocht wat het effect is van de viscositeit
van het gas. We vonden dat de Umb in de simulaties bij verschillende viscositeiten
systematisch afwijkt van de Abrahamsen-Geldart correlatie. In het bijzonder von-
den we dat bij oplopende viscositeit, de Umb in de simulaties een minimum ver-
toont bij ongeveer 2×10−5Pa ·s, waar de correlatie een monotome afname van Umb

voorspelt. Intressant is dat een lineaire fit van de simulatie data tot 2 × 10−5Pa · s
een helling van -0.267 oplevert, wat redelijk dicht bij de waarde -0.347 ligt, welke
volgt uit de Abrahamsen-Geldart correlatie.

Kinetische theorie van granulaire stroming

In dit onderdeel van het proefschrift is het “soft-sphere” model gebruikt voor het
testen van de kinetische theorie van granulaire stroming (KTGS), en in het bijzon-
der de voorspelling voor de excess compressibiliteit, aangezien dit binnen de KTGS
de centrale grootheid is voor het bepalen van de deeltjesdruk en viscositeit. Hier-
voor is het essentieel om eerst een geschikte methode te vinden om het systeem “op
te warmen”, aangezien de energiedissipatie tijdens botsingen er voor zorgt dat de
deeltjes voortdurend kinetische energie verliezen. De meest simpele methode, het
voortdurend schalen van de deeltjessnelheid naar de juiste temperatuur, blijkt niet
altijd tot een evenwichssituatie te leiden die stabiel is over een voldoende lange
tijd, in het bijzonder niet bij hoge deeltjesdichtheden, omdat de snelle deeltjes
meer energie opnemen dan de langzame deeltjes. Door de deeltjes een random
versnelling te geven, in plaats van te schalen, blijkt dat wel een langdurige stabiele
evenwichtssituatie bereikt kan worden. Het nadeel is echter dat deze procedure
minder efficiënt is; daarom is de random versnelling methode gebruikt voor dichte
systemen, en de schalingsmethode alleen voor verdunde systemen, waarvoor blijkt
dat het system lang genoeg in de evenwichtstoestand kan blijven.

Voor licht cohesieve deeltjes wordt een kleine afwijking van de klassieke kine-
tische theorie gevonden, waaruit we kunnen concluderen dat voor deze deeltjes
de invloed van cohesie op de excess compressibiliteit klein is. Voor sterke cohe-
sieve krachten is te verwachten dat de deeltjes complexe aglomeraten vormen. In
dat geval zou er zelfs geen evenwichtstoestand kunnen bestaan, waarmee de hele
kinetische theorie op losse schroeven komt te staan. Een probleem is dat het in
onze systemen lastig is om de grootte van van de cohesive kracht aan te geven,
omdat er geen directe referentiekracht, zoals de zwaartekracht, is. Maar ook de ab-
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solute waarde van de kracht is niet precies bekend, aangezien het zeer lastig is om
de cohesieve kracht direct te meten, en een theoretische voorspelling op grond van
de “bulk” deeltjeseigenschappen (bijv. de polariseerbaarheid) onbetrouwbaar is
omdat de kracht erg afhankelijk is van de oppervlakte-eigenschappen van de deelt-
jes.

De KTGS kan gecorrigeerd worden door een excess compressibiliteit te ge-
bruiken die aangepast is voor het effect van de cohesive krachten. Het deel van de
excess compressibiliteit dat van deze krachten afhangt, y3, blijkt goed beschreven
te kunnen worden met de functie y3 = −C1ε

3
s − C2ε

4 voor cohesive krachten die
relatief zwak zijn, en y3 = −C3εs − C4ε

2 voor relatief sterke cohesive krachten.

Two-fluid model

In het laatste deel van dit onderzoek is het effect van cohesie en wrijvingskracht op
het fluı̈disatie gedrag van A deeltjes onderzocht in het two-fluid model. Voor hoge
gassnelheden (Uo = 0.03 m/s) werd een overgang gevonden van homogene naar
“bubbling” fluı̈disatie door de coëfficiënt C1 te verhogen, welke een mate was voor
de bijdrage van de cohesieve krachten in de excess compressibiliteit. Het blijkt
dus dat deze krachten wel degelijk een invloed kunnen hebben op het fluı̈disatie
gedrag. De invloed van de gas-deeltjes wrijvingskracht op de bed expansie is ook
onderzocht aan de hand van de bekende Wen-Yu correlatie. Voor een exponent
n = 4.65 vinden we dat voor lage gassnelheden deze correlatie een te lage bed
expansie geeft. Een exponent n = 9.6, welke resulteerde uit experimentele gas-
fluı̈disatie studies, blijkt een veel realistischere bed expansie te geven. Dit geeft
aan dat voor een lage gassnelheid een lagere wrijvingskracht nodig zou zijn om
overeenstemming met de experimentele waarneming te krijgen. Aan de andere
kant, voor hoge gassnelheden blijkt juist dat een hogere wrijvingskracht vereist is.
Een ad-hoc schaling van de wrijvingskracht, zoals gehanteerd door enkele onder-
zoekers, blijkt dus geen zinvolle methode te leveren om een betere overeenstem-
ming tussen simulatie en experiment te verkrijgen. Een meer gedetailleerde studie
van de gast-vast interactie voor Geldart A deeltjes is duidelijk vereist.
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